FOSDEM 18

Brussels, February 2018

Anatomy of
the OpenOffice localization process

And how to improve it in future

Andrea Pescetti

pescetti@apache.org

Andrea Pescetti

« Active as a volunteer in several free and open source projects in my
spare time.

» These include Apache OpenOffice, where I served as Project Chair

and Release Manager.

» Now mostly focusing on maintaining the (general-purpose) Italian
spell-check dictionary, and on localization in general.

OpenOffice and languages

Levels of language support

Adding a language

e There are multiple meanings for what "adding a language” actually
means.

o This is usually the first request we receive, and the main driver for
new volunteers.

o There are document languages, interface languages and active
Pootle languages.

Document languages

» Based on ISO codes of languages and countries, and MS LCID
mappings (used for interoperability).

» Needs a few source code file changes.

https://wiki.openoffice.org/wiki/Adding_a_new_language_or_locale

» At the end, OpenOffice will ’know" that a language exists (Format =
Character » Font, and spellcheck).

Interface languages

» Needed if you want to translate OpenOffice in your language.
» In rare cases (e.g., ca-XR or Valencian RACYV, ca-XV or Valencian

AVL) a language can be used as an interface language only.

» In those cases, things get complex (dictionary conflicts, hacks to fit
the generic schema).

Active Pootle languages

e Out of ~120 interface languages that have a partial translation, only
41 are released, those that are 100% translated and tested.

» Those 41 and a few more have been imported into Pootle.

e T'he other partial translations are in the OpenOfhce source code but
were never imported into Pootle in the Apache era.

A new volunteer for [anguage X

e Is X in Pootle? Easy, all done through Pootle.

» Otherwise, language X has to be created in Pootle...

» and this will be handled separately.

The tools

Overview of involved formats and tools

Pootle

» 'To our purpose, it is just an online PO files editor, enabling
collaboration and web-based teamwork.

e It comes with command-line tools that help with management
(manage.py).

« Some teams prefer to work offline with PO files (text files, POEdit or
any other tool) and skip Pootle.

The ASF Pootle

» At Apache, we have one Pootle installation for all projects (not only

OpenOfhice).

 Committers can login directly.

» Other volunteers need to have an account created and permissions

set for a specific language (L1oNN list).

The SDF Format

» A simple (too simple) text format to describe translations, used by the

OpenOftice build system.
» Specific to OpenOffice, with many tab-separated fields.

e One interface translation is one SDF file in
svn.apache.org/repos/ast/openoffice/trunk /extras/l1on/source/
(~2MB, ~73K lines/strings).

History of a string

The full process to get a string translated

1: Producing translatable content

» Source code does (should!) not contain localizable strings directly
but uses resource files for that.

« Example:main/sw/source/ui/table/convert.src

String STR CONVERT TEXT TABLE
{

}s

Text [en-US] = "Convert Text to Table" ;

o This is the English string. In other words, English is special. And this

is not good.

2: Extracting localizable strings

o Generate the en-US SDF template: in Ma 1n/ run
localize -e -1 en-US -f /path/to/en-US.sdf

o All resource files are scanned.

o This should be done once per milestone. €N - US. sdf will contain
our string.

3: Generating PO template files

. 002p0 -P en-US.sdf templates

» This uses the Translate Toolkit utilities and generates new templates
to be updated.

» Templates must then be updated in Pootle (requires shell access to
Pootle), paying attention to properly merging with possibly existing
translations.

4: Translate!

» The new string will be available in Pootle.

« Volunteers can translate it.

» Before building, PO files must be exported from Pootle (shell access
preferred, web interface available too).

5: Generate localized SDF file

. po200 -1 de -t en-US.sdf --keeptimestamp \
--skipsource de new de.sdf

e The file must be placed in
extras/118n/source/de/localize.sdf

o The new build will use it and the new string will be translated. Any
manual SDF file changes are lost in the process.

Possible improvements

Ideas for a better process

Current issues

e The last Pootle update from PO files was done a long time ago, at an
unclear stage (possibly not corresponding to any releases).

» Exporting a currently 100% complete (as per Pootle statistics)
translation and trying a localized build often results in errors (string

validity, gsicheck). Fixing is slow and painful.

. Creating a new language from the current trunk strings can be
attempted, but we would need to synchronize all languages first.

Future: Too many steps?

e The intermediate SDF format is Very error prone.

e It could just be skipped and PO (or xliff) used instead.
« Other projects have already done it.

Future: More automation?

- genlLang, started by Jan Iversen years ago but never integrated and
currently not in active development.

« Many workflow advantages, at least in the initial design.

« An interesting approach to automating many of the manual steps
involved.

Thanks!

pescetti@apache.org

