Why you should take a look at

Antonin Carette - FOSDEM 2018 - Rust devroom

Slides and resources available @ github.com/kOpernicus/fosdem_rust_talk

Chalut 'tiot biloute!

e | tried to understand what the computer | trained to
understand understood

® Free & Open Source ¥

® French guy, you know... The accent... It's so... Yep.

O kOpernicus y

At the beginning...
a heed

Since 2000, for consumers,
big changes.

from 32bit to 64bit
architectures,

from mono-core to multi-
core architectures,

from mono-thread to multi-
threaded applications,
more powerful hardware,

a lot of new softwares,

etc...

Since 2000, for developers,
big troubles:

from sequential code to
multi-threaded/multi-core
support applications,
data race issues,

big memory leaks
problems,

big RAM consumption,
the software race,

etc...

Must be
this tall to
write multi-
threaded
code.

"Must be This Tall to Write
Multi-Threaded Code"

http://bholley.net/blog/2015/must-be-this-tall-to-write-multi-

threaded-code.html/

We need a memory and
threads safe programming
language, with the same
performance than C++.

= Rust, a modern, sdfe, fast,
and concurrent Open Source
systems programming language.

Quick history

®

2009 2015
‘ 201 2013

& 04 1.0

oA W=

Content / Layers

Core concepts

What developers want!? Productivity!

Open Source is not only code!

Awesome companies && awesome projects
#Rust2018

Conclusion

Beyond the best features

Immutability (default)
Memory leaks and data race
safety, raised at compilation
time

Zero-cost abstraction

Define type behaviours with
traits

Rich build tool (cargo)

Generics

Multiple metaprogramming
levels

FFI (C, Ruby, Python, Haskell,
etc.)

WASM
Rich error handling
etc...

1

Once upon a time...

the DVD seller,
and the customer.

Vector author: macrovector (Freepik)

Feature::MemSafety

ﬂ

| would like to
buy this DVD!

1845

‘.

Feature::MemSafety

ﬂ
| Y

Sorry sir, but the
box is empty...

Feature::MemSafety

struct DVD({
title: String,
}

fn take (dvd: DVD) {
println! ("Owner >> Thanks for the DVD!")

}

fn main () {
let dvd : DVD;

take(dvd) ;
}

No null pointer derefence situation

Feature::MemSafety

ﬂ

1845

‘ ;
Sir, we have the

DVD you requested!

Feature::MemSafety

h

Thanks!

Feature::MemSafety

ﬂ

1845

e

This DVD is not
mine anymore!

Feature::MemSafety

struct DVD({
title: String,
}

fn take (dvd: DVD) {
println! ("Owner >> I bought {} - it seems awesome!", dvd.title);

}

fn main () {
let dvd = DVD{title: String::from("Blade Runner")};

take(dvd);

println! ("Me >> I still have {}!", dvd.title);

Ownership situation

Feature::MemSafety

h

| would like to
rent this DVD!

1845

‘.

7.10

Feature::MemSafety

™

1 845 ‘ »
Sure! Please return to us

this DVD before the end
of the FOSDEM!

.11

Feature::MemSafety

struct DVD({
title: String,
}

fn borrow (dvd: &DVD) {

println! ("Borrower >> {} is awesome!", dvd.title);

}

fn main () {
let dvd = DVD{title: String::from("Blade Runner")};

borrow(&dvd) ;
println! ("Me >> I still have {}!", dvd.title);

Borrowing situation

.12

Feature::MemSafety

1845

‘.

| couldn't read the
DVD, due to the
protection copy...

.13

Feature::MemSafety

1845 ‘ '

Sorry for that. This is a

DVD copy of the movie.

.14

Feature::MemSafety

n

e

1845

Cool, a RW disk - let's
try to modify it...

.15

Feature::MemSafety

struct DVD({
title: String,

}

fn mut borrow (dvd: &mut DVD) {
dvd.title = String::from("Bienvenue chez les Ch'tis");

println! ("Borrower >> Nyark nyark!");

}

fn main () {
let mut dvd = DVD{title: String::from("Blade Runner")};

mut borrow(&mut dvd);
println! ("Me >> I still have... WHAT!? WHAT IS {}!?", dvd.title);

Mutable Borrowing Situation

.16

Feature::MemSafety

Using Rust, you can't:

attempt to dereference a null pointer,

attempt to use already-freed memory (ex. dangling pointer),
forget to free memory,

and attempt to free already-freed memory.

17

Feature::MemSafety

But there is rules to respect:

1. the borrower’s scope must not outlast the owner,
2. you can have at least one reference to a resource,
3. you can have one mutable reference to a resource,
4. you can't have the last two rules at the same time.

Feature::ThreadSafety

When does a data race happens?

e at least two pointers to the same ressource,
® at least one writing pointer,
® un-synchronized operations.

.19

Feature::ThreadSafety

How can Rust answers to this problem ?

Ownership (again) because...

¢ if you have multiple references, you don't have any write
pointer,

¢ if you have one pointer, you don't have any other references,

e synchronized operations by default.

.20

Feature::ThreadSafety

Using Rust, you can't:

e read and write the same variable from multiple threads at the
same time (without wrapping it in a lock or other concurrency
primitive),

e forget to acquire a lock before accessing the variable it
protects.

Feature::ZeroCostAbst

Objective: to combine low-level control with
high-level programming concepts.

.22

Feature::ZeroCostAbst

Developers: "Features are good, abstraction is great, and we
need security - but we care about overhead..."

Rust maintainers: "With Rust, you only pay for the features you
actually use! Rust does not contains a GC, and
performs safety checks at compile time!"

Be productive

cAementd
i @clementd

rustup + cargo is by far my fav toolchain
when it comes to build + dep management

& A l'origine en anglais

13:53 - 24 janv. 2018

Clément Delafargue, Clever Cloud CTO

1

Cargo

Awesome features in one command,

compile the program,
check the program,
build the doc,

init the project,

run the program,

run unit tests,

run benchmarks,
publish your crate,
install/uninstall crate(s),
etc...

one configuration file !

.2

Rustup

Objectives:

¢ installs Rust from the official release channels,

e enabling you to easily switch between stable, beta, and
nightly compilers,

e keep the compilers updated,

e making cross-compiling simpler.

https.//rustup.rs/

Be productive

Crates on stock

8,105

13,527

297

downloaded
crates (millions)

0\0/

Be productive

IDE's friendly: RLS, a standard interface for IDE's
editors and tools to interact with Rust.

https://github.com/rust-lang-nursery/rls

Community ‘«

The Rust compiler, for 50 releases...
e 4,700 forks,

e /4,000 commits,

e 2,000 contributors.

The community is open to RFCs here: http://rust-lang.github.io/rfcs

More than 90 Rust User Groups worldwide, in over 35 countries.
Big events in US/Canada (Rust Belt Rust), Europe (Rust Fest), etc...

Community ‘«

Search a meetup/conference or help here: https:.//community.rs/

What's everyone working on this week:
https://users.rust-lang.org/c/community

Search/find whatever you want about community here:
https.//www.rust-lang.org/en-US/community.htm|

Community %

Il. MOST LOVED, DREADED, AND WANTED

D eve | O p e r S u rvey 2 O 1 5 Most Loved Most Dreaded Most Wanted

stackoverflow.com
swift I 77.6%

C++11 I 75.6%
Rust | 72.5%
Go I 72.5%

Clojure GGG 71.0%
Scala I 70.5%
Ft I, 70.1%

Haskell I 69.5%
Ct I 67.2%

Python I ©5.5%

3rd position

Community %

Il. Most Loved, Dreaded, and Wanted

Loved Dreaded Wanted

Developer Survey 2016

stackoverflow.com Rust 79.1%
Swift 72.1%
F# 70.7%
Scala 69.4%
W~ 1st position 5
Clojure 66.7%
React 66.0%
Haskell 64.7%
Python 62.5%
it 62.0%
Node.js 59.6%

.5

Community %

Most Loved, Dreaded, and Wanted Languages

Loved Dreaded Wanted

Developer Survey 2017

stackoverflow.com Smaltalk 67.0%
TypeScript 64.1%
Swift 63.9%
o o e Go 63.3%
4% lstposition on
’ Elixir 62.4%
c# 61.7%
Scala 59.9%
Clojure 59.8%
JavaScript 59.8%
F# 56.2%

Haskell 54.5%

Rust in production

@ OVH.com
oy

Cloye,
o T@' ‘;m.p\;oxj lo(

https.//www.rust-lang.org/en-US/friends.htm/

Rust in production

O

pISton Py
Redox I]IESEOL

https://github.com/rust-unofficial/awesome-rust

#Rust2018

"We care about your requests."

RFC: Rust 2018 Roadmap

IWEelEHW aturon wants to merge 9 commits into rust-lang:master from aturon: roadmap-2018

t5J Conversation 50

-0- Commits 9 Files changed 1

aturon commented a day ago e edited ~ Contributor

This RFC sets the Rust 2018 Roadmap, in accordance with RFC 1728. This year's goals are:

e Ship an epoch release: Rust 2018.

o Build resources for intermediate Rustaceans.

e Connect and empower Rust’s global community.
e Grow Rust’s teams and new leaders within them.

In pursuing these goals, we will focus particularly on four target domains for Rust:

e Web services.

e WebAssembly.

e CLI apps.

e Embedded devices.

A hearty thank you to the 100-some people who wrote blog posts to help drive this process!

Rendered

Lee @3 ®s3 @50

https.//github.com/rust-lang/rfcs/pull/2314

11

Survival guide:

Rust official:

Rust book:

So, interested ?

github.com/kOpernicus/fosdem_rust_talk
https://rust-lang.org

https://doc.rust-lang.org/book

12.

