
How compact is compiled RISC-V
code?

Jeremy Bennett

Copyright © 2019 Embecosm.
Freely available under a Creative Commons license.

What this talk is...

Thanks to openclipart.org

What this talk is not...

Thanks to openclipart.org

Architectures Analysed
● DesignWare ARC HS.

● Arm Cortex-M4 + Thumb 2.

● RISV-V RV32IMC

All 32-bit architectures, with 16-bit short
instructions and no hardware floating point.

BEEBS
Bristol/Embecosm Embedded Benchmark Suite

● free and open source
● mixture of branching (B), memory access (M),

integer ops (I) and floating point (F)
● minimal I/O
● https://arxiv.org/abs/1308.5174
● BEEBS 2.0 now 79 benchmarks

Name B M I F
Blowfish
CRC32
Cubic root solver
Dijkstra
FDCT
Float matmult
Integer matmult
Rjindael
SHA
2D FIR

High frequency

Medium frequency

Low frequency

https://arxiv.org/abs/1308.5174

What to Measure
● Sections in an embedded program

– code: goes into ROM/Flash
– read-only data: goes into ROM/Flash
– initialized data: goes into RAM, maybe setup from ROM
– uninitialized data (BSS): goes into RAM

● We look at code + read-only data size
– most important for embedded systems
– easily measured using size

What to Measure

Look at:
code + read-only data

– most important for
embedded systems

– easily measured
using size

Code

Read only data
Initialized data
Uninitialized data

Stack/heap
RAM

ROM

Absolute Statistics
● Size for each program

– code + read-only data
● Statistics recorded:

– Total size for all programs
● dominated by effects on large programs

– Size of largest program
– Size of smallest programs

Relative Statistics
● Size for ARC and Arm against RISC-V as baseline

– choice of baseline is arbitrary
● Statistics recorded:

– relative size for each program
– arithmetic average for all programs

● should we have used geometric or harmonic mean?
– smallest relative size
– largest relative size

Baseline Results

Baseline Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Total/average 357,058 543,290 407,693

Minimum 780 4,168 994

Maximum 24,068 24,638 35,168

Baseline Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Total/average 357,058 96% 543,290 222% 407,693 100%

Minimum 780 49% 4,168 50% 994 100%

Maximum 24,068 347% 24,638 419% 35,168 100%

Baseline Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Total/average 357,058 96% 543,290 222% 407,693 100%

Minimum 780 49% 4,168 50% 994 100%

Maximum 24,068 347% 24,638 419% 35,168 100%

● Why does Arm do so badly with small programs?

The Smallest Program, ns
$ arc-elf32-nm src/ns/ns
00000294 T benchmark
00002514 G __bss_start
000002c8 T __call_exitprocs
00002514 b completed.3536
…
00000368 T __st_r13_to_r24
00000364 T __st_r13_to_r25
00002500 D __TMC_END__
0000028c T verify_benchmark

61 symbols defined

$ arm-none-eabi-nm src/ns/ns
0000907c r
000081ae T atexit
000081a4 T benchmark
00019364 B __bss_end__
…
0000819c T verify_benchmark
000082d4 t wrap.part.1
00008466 W _write
00008c9c T _write_r

130 symbols defined

$ riscv32-unknown-elf-nm src/ns/ns
00011478 d
00010196 T atexit
00010186 T benchmark
0001157c B __bss_start
…
0001018e T start_trigger
00010192 T stop_trigger
00011574 G __TMC_END__
00010180 T verify_benchmark

43 symbols defined

● Arm is pulling in a lot of standard C library code
● Culprit is the C runtime startup, crt0.0

Results with Dummy crt0.o

The Smallest Program, ns, Without crt0.o
$ arc-elf32-nm src/ns/ns
00000154 T benchmark
00002164 T __bss_start
00002164 T _edata
00002164 T _end
…
00002164 B __start_heap
0000015c T start_trigger
00000160 T stop_trigger
0000014c T verify_benchmar

18 symbols defined

$ arm-none-eabi-nm src/ns/ns
00008044 T benchmark
0001804e T __bss_end__
0001804e T _bss_end__
0001804e T __bss_start
…
00008034 T _start
0000804a T start_trigger
0000804c T stop_trigger
0000803c T verify_benchmark

17 symbols defined

$ riscv32-unknown-elf-nm src/ns/ns
0001008c T benchmark
0001109c T __bss_start
0001109c T _edata
0001109c T _end
…
00010080 T _start
00010094 T start_trigger
00010098 T stop_trigger
00010086 T verify_benchmark

12 symbols defined

● The playing field is leveled for comparison

Dummy crt0.o Summary

ARC
absolute

ARC
relative

Arm
absolute

Arm
relative

RISC-V
absolute

RISC-C
relative

Total/average 309,387 125% 278,598 111% 335,673 100%

Minimum 100 48% 78 40% 66 100%

Maximum 23,504 715% 23,770 433% 34,442 100%

Dummy crt0.o Summary

ARC
absolute

ARC
relative

Arm
absolute

Arm
relative

RISC-V
absolute

RISC-C
relative

Total/average 309,387 125% 278,598 111% 335,673 100%

Minimum 100 48% 78 40% 66 100%

Maximum 23,504 715% 23,770 433% 34,442 100%

● Some of the larger programs do use the C library
● why are these programs often larger for ARC and Arm?

Results without Standard C Library

No Standard C Library Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Total/average 291,735 130% 212,839 83% 309,774 100%

Minimum 100 48% 78 40% 66 100%

Maximum 17,572 712% 16,822 118% 34,272 100%

● Note that the pathological Arm cases have gone
● but not ARC

Absolute Effect of No Standard C Library
ARC Arm RISC-V

Total no crt0.o 309,387 278,598 335,673

Total no crt0.o or libc 291,735 212,839 309,774

Difference (absolute) 17,652 65,759 25,899

Difference (relative) 6% 24% 8%

● ARM standard C library is much larger
● prioritize performance over size?
● no multilib variants for -Os?
● multiple functions per object file and no -gc-sections

Some Notable Variations
ARC Arm RISC-V

cubic 48% 40% 100%
frac 73% 41% 100%

Some Notable Variations
ARC Arm RISC-V

cubic 48% 40% 100%
frac 73% 41% 100%
matmult-float 156% 64% 100%
matmult-int 101% 98% 100%

Some Notable Variations
ARC Arm RISC-V

cubic 48% 40% 100%
frac 73% 41% 100%
matmult-float 156% 64% 100%
matmult-int 101% 98% 100%

● Arm, seems to do a very good job with floating point
● ARC more variable
● these are all emulated floating point in libgcc

Results with Dummy Emulation Library

Results with Dummy Emulation Library

Dummy Emulation Library Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Total/average 188,787 115% 170,717 93% 192,961 100%

Minimum 66 80% 78 67% 66 100%

Maximum 18,820 194% 16,822 118% 18,820 100%

● Pathological ARC cases much improved

Absolute Effect of No Emulation Library
ARC Arm RISC-V

Total no crt0.o or libc 291,735 212,839 309,774

Total no crt0.o, libc or libgcc 188,787 170,717 193,961

Difference (absolute) 102,948 42,122 115,813

Difference (relative) 35% 20% 37%

● ARC and RISC-V emulation is over one third of code size
● for ARM it is just one fifth

● But is it just floating point emulation
● libgcc does much more than just floating point

Results without Math Library

No Math Library Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Total/average 177,779 114% 160,092 92% 182,439 100%

Minimum 100 59% 78 48% 66 100%

Maximum 17,620 194% 16,822 118% 18,820 100%

● Virtually no effect

Absolute Effect of No Math Library
ARC Arm RISC-V

Total no crt0.o, libc or libgcc 188,787 170,717 193,961

Total no crt0.o, libc, libgcc or libm 177,759 160,092 182,439

Difference (absolute) 11,028 10,625 11,522

Difference (relative) 6% 6% 6%

● The effect is small overall, because few programs use the math library
● All architectures just use generic C code for this library, hence similar sizes
● Will have an impact on the programs that do use the math library

Overall Summary
ARC

absolute
ARC

relative
Arm

absolute
Arm

relative
RISC-V

absolute
RISC-C

relative

Baseline 357,048 96% 543,290 222% 407,693 100%

+dummy crt0.o 309,387 125% 278,598 111% 335,673 100%

+dummy libc 291,735 130% 212,839 83% 309,774 100%

+dummy libgcc 188,787 115% 170,717 93% 192,961 100%

+dummy libm 177,779 114% 160,092 92% 182,439 100%

Takeaway
● Useful results only consider the code you compiled

– libraries confound the results
● Therefore remove:

– startup code
– standard C library code
– emulation library code
– math library code

Useful Graph: ARC v RISC-V

Useful Graph: Arm v RISC-V

Useful Graph: ARC v ARM

So What Did We Learn About GCC?
● New instructions would help

– add 14-bit constant: 1.1%
– 48-bit instruction to load 32-bit constant: 1%

● Compiler techniques
– millicode: 0.33%
– linker CSE
– millicode for scaled index load
– peephole optimization of dead register loads
– loop rolling

To Do
● More measurements:

– repeat for LLVM
– look at DesignWare ARC EM
– separate out code and read-only data
– look at initialized writable data

● More compiler analysis
– focus on the programs that are very different

Resources
● Standard BEEBS

– http://beebs.eu/
● BEEBS for this talk

– https://github.com/embecosm/riscv-beebs/tree/grm-size-wip
● Embecosm application note to follow very shortly

http://beebs.eu/
https://github.com/embecosm/riscv-beebs/tree/grm-size-wip

Thank You
www.embecosm.com

Copyright © 2019 Embecosm.
Freely available under a Creative Commons license.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

