Brussels / 2 & 3 February 2019

schedule

Performing Low-cost Electromagnetic Side-channel Attacks using RTL-SDR and Neural Networks


Electromagnetic (EM) side-channel attacks exploit the EM radiation that inherently leaks from electronic systems during various computations. Patterns in the amplitude or frequency of this radiation can be analyzed to break even theoretically secure cryptographic algorithms such RSA and AES. In this presentation, we will cover the various challenges involved with successfully performing EM side-channel attacks using relatively low-cost Software Defined Radios (SDRs) and EM probes. More concretely we will discuss the measurement setup, trace capture process, trace alignment / filtering, and Correlation Electromagnetic Attack (CEMA) for a scenario in which an Arduino Duemilanove is executing a software AES algorithm with an unknown key. Finally, we will see how artificial neural networks can be used to reduce the complexity of performing successful EM side-channel attacks.

Electromagnetic (EM) side-channel attacks exploit the EM radiation that inherently leaks from electronic systems during various computations. Patterns in the amplitude or frequency of this radiation can be analyzed to break even theoretically secure cryptographic algorithms such RSA and AES. In this presentation, we will cover the various challenges involved with successfully performing EM side-channel attacks using relatively low-cost Software Defined Radios (SDRs) and EM probes. More concretely we will discuss the measurement setup, trace capture process, trace alignment / filtering, and Correlation Electromagnetic Attack (CEMA) for a scenario in which an Arduino Duemilanove is executing a software AES algorithm with an unknown key. Finally, we will see how artificial neural networks can be used to reduce the complexity of performing successful EM side-channel attacks.

Speakers

Photo of Pieter Robyns Pieter Robyns

Attachments

Links