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Overview

● IOMMU Overview & Terminology
● Linux VFIO/QEMU Device Passthrough

● Physical IOMMU Role
● Virtual IOMMU benefits

● Virtual IOMMU/Device Assignment Implementation Choices
● SMMUv3 HW Nested Paging Enablement at Linux/Qemu
● Status & Challenges
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Terminology & Goals 



4

IOMMU Overview
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Device Assignment & Physical IOMMU

HPAGPA

VM#0

VM#1
• Guest directly interacts with the physical device

• DMA target address is programmed in GPA

• VMM transparently maps the whole guest RAM 
through the physical IOMMU for assigned devices

• Assigned devices cannot reach any other HPAs
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Stage
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Adding the Virtual IOMMU
• DMA Isolation within the VM 

• Guest drivers can program the device 
with IOVA (scatter-gather commodity)

• Linux VFIO can be used on guest

• DPDK user-space drivers

• Nested assignment to an L2 guest

• Nested logical stages

• Both logical stages must be mapped 
through the physical IOMMU   
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Translation Stages and HW Nested Paging
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Implementations of
vIOMMU for assigned Device
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Single Physical stage Implementation

• VMM uses a single stage at physical level to implement both 
logical stages

• Trap on each guest config/translation structure updates
• On each map notification, VMM SW translates the IOVA into 

GPA (vIOMMU emulation code)

• Huge penalty if dynamic mappings

• On each cache invalidation, the IOVA->HPA mapping is 
invalidated

• This implementation is not possible with vSMMUv3!
• we cannot trap on “map”
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HW Nested Paging Implementation
• VMM owns the main configuration structure for the streamid, 

including the stage2 config structure and stage2 tables

• The guest owns the stage1 config structure and stage1 tables

• No need to trap on map (\o/)

• Need to trap on guest config/IOTLB invalidations

• HW performs both translations (Need for HW fault escalation)

• Guest IOMMU driver works without any specific mode
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Linux VFIO/QEMU SMMUv3
HW Nested Paging Enablement
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Nested Stage Control Flow
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A Guest RAM region is added Build stage2 mapping. Force 
HW stage2 to be used.1

Guest config invalidation 
commands

Propagate stage 1 guest config 
to the host2

Guest sends TLB/PASID cache 
invalidation commans

Propagate invalidations to Host3
MSI Enable                                 
                                                   

Propagate stage1 MSI binding 
from guest to host4

Stage 1 related fault                   
                                                 

Propagate stage 1 faults from 
host to guest5
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Status & Remaining Work 

• Tested on Qualcomm Centriq QDF2400 and Cavium ThunderXv2

• RFC at both kernel/QEMU levels
• Convergence on Linux IOMMU and VFIO kernel API

• Sharing/extending the integration for virtio-iommu, vt-d 3.0, SVM

• Performance needs to be assessed compared to Caching Mode technique
• A lot of stage 2 page table walks can be induced

• Performance may really depend on cache structures
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