
Virtual IOMMU Implementation using
HW Nested Paging

Eric Auger
FOSDEM Feb 2019

 2

Overview

● IOMMU Overview & Terminology
● Linux VFIO/QEMU Device Passthrough

● Physical IOMMU Role
● Virtual IOMMU benefits

● Virtual IOMMU/Device Assignment Implementation Choices
● SMMUv3 HW Nested Paging Enablement at Linux/Qemu
● Status & Challenges

 3

Terminology & Goals

4

IOMMU Overview

Device
System
Interco

Memory-based
configuration
structures

Configuration
Lookup TLB /

Page Table
Walk

streamid

input @ +
prot flags

Page Tables

IOMMU HW

 5

Device Assignment & Physical IOMMU

HPAGPA

VM#0

VM#1
• Guest directly interacts with the physical device

• DMA target address is programmed in GPA

• VMM transparently maps the whole guest RAM
through the physical IOMMU for assigned devices

• Assigned devices cannot reach any other HPAs

Assigned Dev

Translation
Stage

RAM

 6

Adding the Virtual IOMMU
• DMA Isolation within the VM

• Guest drivers can program the device
with IOVA (scatter-gather commodity)

• Linux VFIO can be used on guest

• DPDK user-space drivers

• Nested assignment to an L2 guest

• Nested logical stages

• Both logical stages must be mapped
through the physical IOMMU

HPAGPA

Stage #2
Translation

Assigned Dev

Assigned Dev

VM#1

RAM

GIOVA

Stage #1
Translation

Assigned Dev

Assigned Dev

VM#0

7

Translation Stages and HW Nested Paging

stage 2 tables

stage 2 cfg

GPA + prot

streamid

HPA

IPA

stage 2 Only (hyp)

stage 1 cfg

VA + prot

streamid

stage 2 cfg

GPA

stage 1 tables stage 2 tables

HPA

Nested Mode

stage 1 Only (OS)

streamid

stage 1 cfg

stage 1 tables

IOVA + prot PA

 8

Implementations of
vIOMMU for assigned Device

9

Single Physical stage Implementation

• VMM uses a single stage at physical level to implement both
logical stages

• Trap on each guest config/translation structure updates
• On each map notification, VMM SW translates the IOVA into

GPA (vIOMMU emulation code)

• Huge penalty if dynamic mappings

• On each cache invalidation, the IOVA->HPA mapping is
invalidated

• This implementation is not possible with vSMMUv3!
• we cannot trap on “map”

guest

 IOVA GPA HPA

vmm

Logical

View

 HPA

Physical

Progr.

 IOVA

10

HW Nested Paging Implementation
• VMM owns the main configuration structure for the streamid,

including the stage2 config structure and stage2 tables

• The guest owns the stage1 config structure and stage1 tables

• No need to trap on map (\o/)

• Need to trap on guest config/IOTLB invalidations

• HW performs both translations (Need for HW fault escalation)

• Guest IOMMU driver works without any specific mode

IOVA

guest

Stage 1 Stage 2

HPA

vmm

GPA

S1ContextPtrconfig
S2TTB

Other Attrs/Config

Stream Table Entry

StreamID #i

Stage 2 Tables

VMM

VMID

TLB
caches

Config
caches

TTB0config
ASID TTB1

MAIR

Context Descriptor
Stage 1 Tables

guest

11

Linux VFIO/QEMU SMMUv3
HW Nested Paging Enablement

12

Nested Stage Control Flow

SMMUv3 Guest
Driver

QEMU SMMUv3
device

VFIO-PCI
driver

QEMU VFIO-PCI
device

SMMUv3
driver

Guest

Host User

Host kernel
(2

) S
E
T
_PA

S
ID

_TA
B

LE

(3
) C

A
C

H
E

_IN
V
A

LID
A
T
E

(4
) B

IN
D

_M
S
I

(5
) S

1
 FA

U
LT

 N
O

T
IFIC

A
T
IO

N

QEMU
Memory

(1
) M

A
P
/U

N
M

A
P
 S

TA
G

E
2

A Guest RAM region is added Build stage2 mapping. Force
HW stage2 to be used.1

Guest config invalidation
commands

Propagate stage 1 guest config
to the host2

Guest sends TLB/PASID cache
invalidation commans

Propagate invalidations to Host3
MSI Enable

Propagate stage1 MSI binding
from guest to host4

Stage 1 related fault

Propagate stage 1 faults from
host to guest5

13

Assigned
Device

Assigned
Device

MSI/ARM Brain Teaser

gDB
gIOVA

IOVA

guest

Stage 1

/GPA

Stage 2

HPA

vmm

hIOVA
hDB

IOVA

Stage 2

HPA

vmm

hDBgIOVA
gDB

IOVA

guest

Stage 1

GPA

NOK

OK

14

Status & Remaining Work

• Tested on Qualcomm Centriq QDF2400 and Cavium ThunderXv2

• RFC at both kernel/QEMU levels
• Convergence on Linux IOMMU and VFIO kernel API

• Sharing/extending the integration for virtio-iommu, vt-d 3.0, SVM

• Performance needs to be assessed compared to Caching Mode technique
• A lot of stage 2 page table walks can be induced

• Performance may really depend on cache structures

 15

References / Credits

• Device Assignment with Nested Guest and DPDK, Peter Xu, KVM Forum 2018

• Shared Virtual Address in KVM, Yi Liu, Jacob Pan, KVM forum 2018

• Kernel Series: [RFC v3 00/21] SMMUv3 Nested Stage Setup

• https://github.com/eauger/linux/tree/v5.0-rc1-2stage-rfc-v3

• QEMU Series: [RFC v2 00/28] vSMMUv3/pSMMUv3 2 stage VFIO integration

• v2++: https://github.com/eauger/qemu/commits/v3.1.0-rc5-2stage-v3-for-
rfc3-test-only

THANK YOU

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatlinkedin.com/company/red-hat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

