A Dog by Any Other Name Would Run Just as Slow Computational and Hardware Complexity in Software Defined Radio

John S. Brunhaver II

School of Electrical Computer Energy Engineering Fulton Schools of Engineering Arizona State University

Feb 2nd 2020

Algorithms change to suit their hardware context

Who am I, to say this?

I am a digital hardware engineer

Tukwila (65nm)

Beckton (32nm)

Kepler (28nm)

Ira A.Fulton Schools of Engineering Arizona State University

ASU-SNL-TC1 (12nm FinFet)

I started research with hw/sw co-design

Motion Blur Defocus Blur Motion and Defocus Blur

ack. Kayvon Fatahalian

- Brunhaver, John S., et. al. "Hardware implementation of micropolygon rasterization with motion and defocus blur." HPG 2010.
- Fatahalian, Kayvon, et al. "Data-parallel rasterization of micropolygons with defocus and motion blur." HPG 2009 John (ASU) Dogs. FPGAs. and SDRs! Oh My! Feb 2nd 2020 4 / 28

- ▶ John, S. Brunhaver. Design and optimization of a stencil engine. Diss. Stanford University, 2015.
- Hegarty, James, et al. "Darkroom: compiling high-level image processing code into hardware pipelines." ACM Trans. Graph. 33.4 (2014): 144-1.
- https://halide-lang.org/

John (ASU)

Dogs, FPGAs, and SDRs! Oh My!

Arizona State University

We demoed on FPGAs

- Pu, Jing, et al. "Programming heterogeneous systems from an image processing DSL." ACM Transactions on Architecture and Code Optimization (TACO) 14.3 (2017): 1-25.
- https://github.com/jingpu/Halide-HLS
- ► Xilinx Zynq-7000 SoC ZC702 Evaluation Kit

Currently we work on the general problem

- Given a set of code written by domain experts, can you
 - Identify kernels in an applications
 - Procedurally label kernels, identifying equivelance
 - Discover the **taxonomy** of kernels
 - Predict and arbitrage accelerators and their organization

Currently we work on the general problem

- Given a set of code written by domain experts, can you
 - Identify kernels in an applications
 - Procedurally label kernels, identifying equivelance
 - Discover the **taxonomy** of kernels
 - Predict and arbitrage accelerators and their organization
 - Produce FPGA code

Static -----

- Preprint "Automated Parallel Kernel Extraction from Dynamic Application Traces" http://arxiv.org/abs/2001.09995
- CodeOcean https://codeocean.com/capsule/2cb73b4e-11f9-4547-8fe3-4b4956d3d251/tree
- ► Git https://github.com/ruhrie/TraceAtlas

John (ASU)

Static ------

- Preprint "Automated Parallel Kernel Extraction from Dynamic Application Traces" http://arxiv.org/abs/2001.09995
- CodeOcean https://codeocean.com/capsule/2cb73b4e-11f9-4547-8fe3-4b4956d3d251/tree
- ► Git https://github.com/ruhrie/TraceAtlas

John (ASU)

- Preprint "Automated Parallel Kernel Extraction from Dynamic Application Traces" http://arxiv.org/abs/2001.09995
- CodeOcean https://codeocean.com/capsule/2cb73b4e-11f9-4547-8fe3-4b4956d3d251/tree
- ► Git https://github.com/ruhrie/TraceAtlas

John (ASU)

- Preprint "Automated Parallel Kernel Extraction from Dynamic Application Traces" http://arxiv.org/abs/2001.09995
- CodeOcean https://codeocean.com/capsule/2cb73b4e-11f9-4547-8fe3-4b4956d3d251/tree
- ► Git https://github.com/ruhrie/TraceAtlas

John (ASU)

FPGAs are just like puppies

Ira A. Fulton Schools of Engineering Arizona State University

FPGAs are just like puppies

Ira A. Fulton Schools of Engineering Arizona State University

FPGAs are just like puppies

Now you have a puppy – Systems, atoms, and accelerators

- ► System Pitfalls
 - ► Feed -and- Care of a Dog
- Structural FPGA Design
 - Atoms of traick
- Modelling Accelerator Structure
 - Putting the trick together

Now you have a puppy – Systems, atoms, and accelerators

System Pitfalls

- ► Feed -and- Care of a Dog
- Structural FPGA Design
 - Atoms of traick
- Modelling Accelerator Structure
 - Putting the trick together

Understand your application's composition

Understand your application's composition

Ira A. Fulton Schools of Engineering Arizona State University

Optimize what matters

Ira A. Fulton Schools of Engineering Arizona State University

Optimize what matters

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

August 21, 2019

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

John (ASU)

ra A Fultor

For Dramatic effect only ...

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019 For Dramatic effect only ...

User - Blocking OS Call to use driver

John (ASU)

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush

John (ASU)

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy

John (ASU)

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete
- Driver Command Accel

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete
- Driver Command Accel
- Driver Poll Accel for complete

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete
- Driver Command Accel
- Driver Poll Accel for complete
- Driver Command DMA

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete
- Driver Command Accel
- Driver Poll Accel for complete
- Driver Command DMA
- Driver Poll DMA

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019

For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete
- Driver Command Accel
- Driver Poll Accel for complete
- Driver Command DMA
- Driver Poll DMA
- ► OS Restore

John (ASU)

Dogs, FPGAs, and SDRs! Oh My!

Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1) August 21, 2019 For Dramatic effect only ...

- User Blocking OS Call to use driver
- OS Forced cache flush
- Driver Forced data copy
- Driver Send command to DMA
- Driver Poll DMA for complete
- Driver Command Accel
- Driver Poll Accel for complete
- Driver Command DMA
- Driver Poll DMA
- ► OS Restore

John (ASU)

Dogs, FPGAs, and SDRs! Oh My!

Feb 2nd 2020

0 13 / 28

Hide your latency

- Overlap transfer and operation
- ► Sequence operation in PL
- Execute and overlap many operations

Hide your latency

- Overlap transfer and operation
- ► Sequence operation in PL
- Execute and overlap many operations
- Avoid blocking, stream instead
 - Skip False memory barriers
 - ► True memory barriers

Hide your latency

- Overlap transfer and operation
- ► Sequence operation in PL
- Execute and overlap many operations
- Avoid blocking, stream instead
 - Skip False memory barriers
 - True memory barriers

Understand your applications data-rate

Kernel	Expression	Compute	Bandwidth	Ratio
Ахру	$y_i = \alpha x_i + b$	N	N	1
Inner Product	$z = \sum_{i=1}^{N} x_i y_i$	N	N	1
FIR-1D	$y_i = \sum_{l=1}^{M} \alpha_l x_{i-k}$	NM	N	M
FIR-2D		$N^2 M^2$	N^2	M^2
FIR-3D		$N^3 M^3$	N^3	<i>M</i> ³
Bubble Sort	$y_i: y_{i+1} \geq y_i \geq y_{i-1}$	N^2	N	N
GEMM	$z_{i,j} = \sum_{k=1}^{N} x_{i,k} y_{i,k}$	<i>N</i> ³	N^2	N
FFT	$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-\frac{j2\pi}{N}kn}$	NlogN	Ν	logN

Understand your applications data-rate

Resource	Count	Unit rate	Total bandwidth
DRAM Ports	2	128 <i>b</i> · 300 <i>MHz</i>	77 Gbps
BRAM Ports	2 <i>k</i>	32 <i>b</i> · 600 <i>MHz</i>	38 Tbps
DSP	2 <i>k</i>	3 · 32 <i>b</i> · 600 <i>MHz</i>	114 Tbps
Reg	0.5 <i>M</i>	$1 \cdot 600 MHz$	300 Tbps

Roughly – Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC

- Avoid the memory wall
 - Registers mitigate band-limit in BRAM
 - BRAM mitigates band-limit in DRAM
 - Avoid writing back intermediates

Train actions then tricks – Understand FPGA structures

- System Pitfalls
 - ► Feed -and- Care of a Dog
- Structural FPGA Design
 - Atoms of traick
- Modelling Accelerator Structure
 - Putting the trick together

Train actions then tricks – Understand FPGA structures

- System Pitfalls
 - ► Feed -and- Care of a Dog
- Structural FPGA Design
 - Atoms of traick
- Modelling Accelerator Structure
 - Putting the trick together

- ► Resources
 - ► BRAM 2× 18kb / 36b RW
 - ► DSP 2× 24b MAC
 - ▶ LUTs 300× 5:2 fx
 - ▶ Regs 300× 1b state
 - Routing

- ► Resources
 - ► BRAM 2× 18kb / 36b RW
 - ▶ DSP 2× 24b MAC
 - ▶ LUTs 300× 5:2 fx
 - ▶ Regs 300× 1b state
 - Routing
- Minor misconceptions

- ► Resources
 - ► BRAM 2× 18kb / 36b RW
 - ▶ DSP 2× 24b MAC
 - ▶ LUTs 300× 5:2 fx
 - Regs $300 \times 1b$ state
 - Routing
- Minor misconceptions
 - Not a Verilog accelerator

- ► Resources
 - ► BRAM 2× 18kb / 36b RW
 - ▶ DSP 2× 24b MAC
 - ▶ LUTs 300× 5:2 fx
 - ▶ Regs 300× 1b state
 - Routing
- Minor misconceptions
 - Not a Verilog accelerator
 - ► Slices, not LUTs and Regs

- ► Resources
 - ► BRAM 2× 18kb / 36b RW
 - ▶ DSP 2× 24b MAC
 - ▶ LUTs 300× 5:2 fx
 - ► Regs 300× 1b state
 - Routing
- Minor misconceptions
 - Not a Verilog accelerator
 - Slices, not LUTs and Regs
 - Wires are expensive, not gates

- ► Resources
 - ► BRAM 2× 18kb / 36b RW
 - ▶ DSP 2× 24b MAC
 - ▶ LUTs 300× 5:2 fx
 - ▶ Regs 300× 1b state
 - Routing
- Minor misconceptions
 - Not a Verilog accelerator
 - Slices, not LUTs and Regs
 - Wires are expensive, not gates
 - ► Global wires are worse

Ira A. Fulton Schools of Engineering Arizona State University

Pipeline your DSP

UltraScale Architecture DSP Slice User Guide UG579 (v1.9) September 20, 2019

Pipeline your DSP

UltraScale Architecture DSP Slice User Guide UG579 (v1.9) September 20, 2019

Ira A. Fulton Schools of Engineering Arizona State University

Pipeline your BRAM

UltraScale Architecture Memory Resources User Guide UG573 (v1.10) February 4, 2019

Ira A. Fulton Schools of Engineering Arizona State University

Maximize resource utilization

► Assets:

- ► DSP Rate, Location
- BRAM Capacity, Ports, Bandwidth, Location
- DRAM Bandwidth, Ports
- ► Goals:
 - ► Spatial utilization (70 90%)
 - ► Temporal utilization (> 99%)
 - Minimize regret

Plan a trick from atoms - Predict Accelerator Structure

- System Pitfalls System Pitfalls
 - ► Feed -and- Care of a Dog
- Structural FPGA Design
 - Atoms of traick
- Modelling Accelerator Structure
 - Putting the trick together

Plan a trick from atoms - Predict Accelerator Structure

- System Pitfalls System Pitfalls
 - ► Feed -and- Care of a Dog
- Structural FPGA Design
 - Atoms of traick
- Modelling Accelerator Structure
 - Putting the trick together

In Place FFT

Make a "good" FOSS Verilog library

Utilize best practices from software

- Compact API
- Parametric calls
- Well documented
- Unit tested
- Benchmarked

Putting it all together

- Optimize what matters
- ► Hide your latency
- ► Exploit locality
- Think structurally

Ira A. Fulton Schools of Engineering Arizona State University

Putting it all together

- Optimize what matters
- Hide your latency
- Exploit locality
- Think structurally
- Algorithms change to suit their hardware context

Thank you

Questions, Thoughts, Concerns, Hopes, Dreams, Desires?

