

Analyzing DPDK applications with eBPF

Sharpening the toolset

Stephen Hemminger Fosdem, February 1, 2020

Microsoft

Table of Contents

Introduction

Packet Capture

Tracing

Lttng

Bpftrace

Performance

Conclusion

Introduction

Ancient wisdom

French proverbMauvés ovriers ne trovera ja bon hostill Bad workers will never find a good tool

Ancient wisdom

French proverb

Mauvés ovriers ne trovera ja bon hostill Bad workers will never find a good tool

Chinese proverb

To do a good job, a craftsman must sharpen his tools.

Don't focus on a tool set

- Don't focus on a tool set
- Problem statement

- Don't focus on a tool set
- Problem statement
- Workload Characterization

- Don't focus on a tool set
- Problem statement
- Workload Characterization
- USE
 - Utilization
 - Saturation
 - Errors

- Don't focus on a tool set
- Problem statement
- Workload Characterization
- USE
 - Utilization
 - Saturation
 - Errors

See Linux tracing talks (Brendan Gregg et al)

Capture vs Tracing

Packet Capture

DPDK pdump

- Packet copied and queued to ring
- Secondary process sends to libpcap
- Packets recorded in pcap format

■ No metadata (vlan, offload, ...)

- No metadata (vlan, offload, ...)
- Inaccurate timestamp

- No metadata (vlan, offload, ...)
- Inaccurate timestamp
- No direction information

- No metadata (vlan, offload, ...)
- Inaccurate timestamp
- No direction information
- Single port only

- No metadata (vlan, offload, ...)
- Inaccurate timestamp
- No direction information
- Single port only
- No filtering

- No metadata (vlan, offload, ...)
- Inaccurate timestamp
- No direction information
- Single port only
- No filtering
- Poor performance

Nanosecond resolution timestamp

- Nanosecond resolution timestamp
- System and Interface metadata

- Nanosecond resolution timestamp
- System and Interface metadata
- Multiple interfaces

- Nanosecond resolution timestamp
- System and Interface metadata
- Multiple interfaces
- Flags (direction, hash, ...)

- Nanosecond resolution timestamp
- System and Interface metadata
- Multiple interfaces
- Flags (direction, hash, ...)
- Comments

Packet filtering with libpcap

PCAP filter string: ip dst fosdem.org

Packet filtering cBPF

Translated to eBPF

```
eBPF program (11 insns):
L0:
    xor r0, r0
L1: xor r7, r7
L2: mov r6, r1
L3: ldh r0, [12]
L4:
       jne r0, #0x800, L9
L5: ldw r0, [30]
L6:
       jne r0, #0x1f16168c, L9
L7:
       mov32 r0, #0xffff
L8: exit
L9:
       mov32 r0, #0x1
L10: exit
```

Tracing

Easy to use

- Easy to use
- User Defined Trace Points

- Easy to use
- User Defined Trace Points
- Filtering

- Easy to use
- User Defined Trace Points
- Filtering
- Common Trace Format

- Easy to use
- User Defined Trace Points
- Filtering
- Common Trace Format
- High performance

Adding Ittng tracepoint

Using eBPF from userspace

Origin: dtrace

Using eBPF from userspace

- Origin: dtrace
- Adds NOP locations and ELF section

Using eBPF from userspace

- Origin: dtrace
- Adds NOP locations and ELF section
- Run code at tracepoint

Using eBPF from userspace

- Origin: dtrace
- Adds NOP locations and ELF section
- Run code at tracepoint
- Prerequisites

uprobe Linux 3.14 (or later) kernel

Using eBPF from userspace

- Origin: dtrace
- Adds NOP locations and ELF section
- Run code at tracepoint
- Prerequisites
 - uprobe Linux 3.14 (or later) kernel
 sys/sdt.h systemtap-std-dev

Using eBPF from userspace

- Origin: dtrace
- Adds NOP locations and ELF section
- Run code at tracepoint
- Prerequisites
 - uprobe Linux 3.14 (or later) kernel
 sys/sdt.h systemtap-std-dev

Adding DTRACE probes

Looking for USDT

Use bpftrace to look for tracepoints in application

\$ sudo bpftrace -l "usdt:./build/app/testpmd"
usdt:./build/app/testpmd:testpmd:rx_burst

Running bpftrace

Build a histogram of the number of packets per loop

Performance

■ Limited hardware - x85 with 25G NIC

- Limited hardware x85 with 25G NIC
- One off test

- Limited hardware x85 with 25G NIC
- One off test
- Untuned

- Limited hardware x85 with 25G NIC
- One off test
- Untuned
- Limited scope
 - Testpmd 64 byte packets

- Limited hardware x85 with 25G NIC
- One off test
- Untuned
- Limited scope
 - Testpmd 64 byte packets
 - Immediate drop

- Limited hardware x85 with 25G NIC
- One off test
- Untuned
- Limited scope
 - Testpmd 64 byte packets
 - Immediate drop
 - Current DPDK 19.11

- Limited hardware x85 with 25G NIC
- One off test
- Untuned
- Limited scope
 - Testpmd 64 byte packets
 - Immediate drop
 - Current DPDK 19.11
 - Single queue active

Test configuration

- Sender tx-only
- Receiver rx-only
- Observe Receive packets/sec

Capture and Tracing Performance

Test	Disabled	Enabled
Pdump	0	-36.85
Pdump + eBPF	0	0
Lttng	-0.42	-0.02
bpftrace	-0.01	-56.72

Conclusion

DPDK packet capture

- DPDK packet capture
 - Pcapng support

- DPDK packet capture
 - Pcapng support
 - capture filter

- DPDK packet capture
 - Pcapng support
 - capture filter
 - dumpcap (tshark) syntax

- DPDK packet capture
 - Pcapng support
 - capture filter
 - dumpcap (tshark) syntax

- DPDK packet capture
 - Pcapng support
 - capture filter
 - dumpcap (tshark) syntax
- DPDK trace points

Thank you

- Questions
- Thanks
 - DPDK community
 - LTTng
 - eBPF developers
- Contact stephen@networkplumber.org @networkplumber