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Bad workers will never find a good tool

Chinese proverb
To do a good job, a craftsman must sharpen his tools.
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= Utilization

= Saturation
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See Linux tracing talks (Brendan Gregg et al)



Capture vs Tracing

Capture DPDK
Application

_ send |[— >
receive [

A

Tracing




Packet Capture



DPDK pdump

DPDK Primary Application

librte_pdump ¢

dpdk_port0

Traffic Generator

dpdk-pdump
tool
PCAP PMD

capture.pcap

Packet copied and queued
to ring

Secondary process sends to
libpcap

Packets recorded in pcap

format
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= No metadata (vlan, offload, ...)
» |naccurate timestamp

= No direction information

= Single port only

= No filtering

= Poor performance
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PCAP Next Generation

= Nanosecond resolution timestamp
= System and Interface metadata

= Multiple interfaces

= Flags (direction, hash, ...)

= Comments



Packet filtering with libpcap

PCAP filter string: ip dst fosdem.org

CcBPF program (6 insns):

(000) 1dh [12]

(001) jeq #0x800 jt 2 jf 5
(002) 1d [30]

(003) jeq #0x1f16168c jt 4 jf 5
(004) ret #65535

(005) ret #0



Packet filtering cBPF

Translated to eBPF

eBPF program (11 insns):

LO: xor rO, ro

L1: xor r7, r7

L2: mov r6, ril

L3: 1dh ro, [12]

L&: jne ro, #0x800, L9
L5: ldw ro, [30]

L6: jne r0, #0x1f16168c, L9
L7: mov32 r0, #HOxffff
L8: exit

L9: mov32 r0, #0Ox1
L10O: exit
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Linux Trace toolkit

= Easy to use

= User Defined Trace Points
= Filtering

= Common Trace Format

= High performance
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Adding Ittng tracepoint

/* Send burst of packets on an output interface x/
static inline int
send_burst(struct Icore_conf xqconf, uintl6_t n, uintl6_t port)
{
struct rte_mbuf xxm_table = qconf—>tx_mbufs[port]. m_table;
uintl6_t queueid = qconf—>tx_queue_id[port];
int ret;
ret = rte_eth_tx_burst(port, queueid, m_table, n);
tracepoint(I13fwd, tx_burst, port, queueid, n, ret);
if (unlikely(ret < n))
“lrte_pktmbuf_free_bulk(&m_table[ret], n — ret);
return 0;
}

12
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Adding DTRACE probes

static void
pkt_burst_receive(struct fwd_stream xfs)

{

struct rte_mbuf xpkts_burst [MAX_PKT_BURST];
uintl6_t i, nb_rx;

/* Receive a burst of packets. x/

~71  pkts_burst, nb_pkt_per_burst);

DTRACE_PROBEL(testpmd, rx_burst, nb_rx);

if (unlikely(nb_rx = 0))
71 " lreturn;

= rte_eth_rx_burst(fs—>rx_port, fs—>rx_queue,
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Looking for USDT

Use bpftrace to look for tracepoints in application

$ sudo bpftrace -1 "usdt:./build/app/testpmd"
usdt:./build/app/testpmd:testpmd:rx_burst

15



Running bpftrace

Build a histogram of the number of packets per loop

$ sudo bpftrace -e 'usdt:./build/app/testpmd:rx_burst { @ = hist(argd); }'
Attaching 1 probe...

C

a:

[0] 16001930 |aaaaadddddaaadndddaaddddddaNdddadIIIYDNNIIADD |
[1] 0| |
[2, 4) 0| |
[4, 8) 0| |
[8, 16) 0| |
[16, 32) 0| |
[32, 64) 5333977 |30dRIIIIVVNAND

16



Performance




= Limited hardware - x85 with 25G NIC
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Limited hardware - x85 with 25G NIC
One off test

= Untuned
= Limited scope

= Testpmd - 64 byte packets
= Immediate drop

= Current DPDK 19.11

= Single queue active
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Test configuration

Testpmd Testpmd
tx_only rx_only

= Sender tx-only
= Receiver rx-only

= Observe Receive packets/sec

18



Capture and Tracing Performance

Test Disabled | Enabled
Pdump 0 -36.85
Pdump + eBPF 0 0
Lttng -0.42 -0.02

bpftrace -0.01 -56.72
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Ongoing work

= DPDK packet capture
= Pcapng support
= capture filter
= dumpcap (tshark) syntax

= DPDK trace points
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Thank you

= Questions
= Thanks
= DPDK community
= LTTng
= eBPF developers
= Contact
stephen@networkplumber.org
@networkplumber
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