2)DPDK

Analyzing DPDK applications with eBPF

Sharpening the toolset

Stephen Hemminger
Fosdem, February 1, 2020

Microsoft

Table of Contents

Introduction
Packet Capture

Tracing
Lttng
Bpftrace

Performance

Conclusion

Introduction

French proverb
Mauvés ovriers ne trovera ja bon hostill

Bad workers will never find a good tool

French proverb
Mauvés ovriers ne trovera ja bon hostill

Bad workers will never find a good tool

Chinese proverb
To do a good job, a craftsman must sharpen his tools.

Methodology

= Don't focus on a tool set

Methodology

= Don't focus on a tool set

= Problem statement

Methodology

= Don't focus on a tool set
= Problem statement

= Workload Characterization

Methodology

= Don't focus on a tool set
= Problem statement

Workload Characterization
= USE

= Utilization

= Saturation
= Errors

Methodology

Don't focus on a tool set

Problem statement

Workload Characterization
USE

= Utilization

= Saturation
= Errors

See Linux tracing talks (Brendan Gregg et al)

Capture vs Tracing

Capture DPDK
Application

_ send |[— >
receive [

A

Tracing

Packet Capture

DPDK pdump

DPDK Primary Application

librte_pdump ¢

dpdk_port0

Traffic Generator

dpdk-pdump
tool
PCAP PMD

capture.pcap

Packet copied and queued
to ring

Secondary process sends to
libpcap

Packets recorded in pcap

format

Pdump limitations

= No metadata (vlan, offload, ...)

Pdump limitations

= No metadata (vlan, offload, ...)

= Inaccurate timestamp

Pdump limitations

= No metadata (vlan, offload, ...)
= Inaccurate timestamp

= No direction information

Pdump limitations

No metadata (vlan, offload, ...)
= Inaccurate timestamp
= No direction information

= Single port only

Pdump limitations

= No metadata (vlan, offload, ...)
» |naccurate timestamp

= No direction information

= Single port only

= No filtering

Pdump limitations

= No metadata (vlan, offload, ...)
» |naccurate timestamp

= No direction information

= Single port only

= No filtering

= Poor performance

PCAP Next Generation

= Nanosecond resolution timestamp

PCAP Next Generation

= Nanosecond resolution timestamp

= System and Interface metadata

PCAP Next Generation

= Nanosecond resolution timestamp
= System and Interface metadata

= Multiple interfaces

PCAP Next Generation

= Nanosecond resolution timestamp
= System and Interface metadata

= Multiple interfaces

Flags (direction, hash, ...)

PCAP Next Generation

= Nanosecond resolution timestamp
= System and Interface metadata

= Multiple interfaces

= Flags (direction, hash, ...)

= Comments

Packet filtering with libpcap

PCAP filter string: ip dst fosdem.org

CcBPF program (6 insns):

(000) 1dh [12]

(001) jeq #0x800 jt 2 jf 5
(002) 1d [30]

(003) jeq #0x1f16168c jt 4 jf 5
(004) ret #65535

(005) ret #0

Packet filtering cBPF

Translated to eBPF

eBPF program (11 insns):

LO: xor rO, ro

L1: xor r7, r7

L2: mov r6, ril

L3: 1dh ro, [12]

L&: jne ro, #0x800, L9
L5: ldw ro, [30]

L6: jne r0, #0x1f16168c, L9
L7: mov32 r0, #HOxffff
L8: exit

L9: mov32 r0, #0Ox1
L10O: exit

10

Tracing

Linux Trace toolkit

= Easy to use

11

Linux Trace toolkit

= Easy to use

= User Defined Trace Points

11

Linux Trace toolkit

= Easy to use
= User Defined Trace Points

= Filtering

11

Linux Trace toolkit

= Easy to use

= User Defined Trace Points

Filtering

= Common Trace Format

11

Linux Trace toolkit

= Easy to use

= User Defined Trace Points
= Filtering

= Common Trace Format

= High performance

11

Adding Ittng tracepoint

/* Send burst of packets on an output interface x/
static inline int
send_burst(struct Icore_conf xqconf, uintl6_t n, uintl6_t port)
{
struct rte_mbuf xxm_table = qconf—>tx_mbufs[port]. m_table;
uintl6_t queueid = qconf—>tx_queue_id[port];
int ret;
ret = rte_eth_tx_burst(port, queueid, m_table, n);
tracepoint(I13fwd, tx_burst, port, queueid, n, ret);
if (unlikely(ret < n))
“lrte_pktmbuf_free_bulk(&m_table[ret], n — ret);
return 0;
}

12

Using eBPF from userspace

= Origin: dtrace

13

Using eBPF from userspace

= Origin: dtrace
= Adds NOP locations and ELF section

13

Using eBPF from userspace

= Origin: dtrace
= Adds NOP locations and ELF section

= Run code at tracepoint

13

Using eBPF from userspace

Origin: dtrace
Adds NOP locations and ELF section

= Run code at tracepoint
= Prerequisites

uprobe Linux 3.14 (or later) kernel

13

Using eBPF from userspace

Origin: dtrace
Adds NOP locations and ELF section

= Run code at tracepoint
= Prerequisites

uprobe Linux 3.14 (or later) kernel
sys/sdt.h systemtap-std-dev

13

Using eBPF from userspace

Origin: dtrace
Adds NOP locations and ELF section

= Run code at tracepoint
= Prerequisites

uprobe Linux 3.14 (or later) kernel
sys/sdt.h systemtap-std-dev

13

Adding DTRACE probes

static void
pkt_burst_receive(struct fwd_stream xfs)

{

struct rte_mbuf xpkts_burst [MAX_PKT_BURST];
uintl6_t i, nb_rx;

/* Receive a burst of packets. x/

~71 pkts_burst, nb_pkt_per_burst);

DTRACE_PROBEL(testpmd, rx_burst, nb_rx);

if (unlikely(nb_rx = 0))
71 " lreturn;

= rte_eth_rx_burst(fs—>rx_port, fs—>rx_queue,

14

Looking for USDT

Use bpftrace to look for tracepoints in application

$ sudo bpftrace -1 "usdt:./build/app/testpmd"
usdt:./build/app/testpmd:testpmd:rx_burst

15

Running bpftrace

Build a histogram of the number of packets per loop

$ sudo bpftrace -e 'usdt:./build/app/testpmd:rx_burst { @ = hist(argd); }'
Attaching 1 probe...

C

a:

[0] 16001930 |aaaaadddddaaadndddaaddddddaNdddadIIIYDNNIIADD |
[1] 0| |
[2, 4) 0| |
[4, 8) 0| |
[8, 16) 0| |
[16, 32) 0| |
[32, 64) 5333977 |30dRIIIIVVNAND

16

Performance

= Limited hardware - x85 with 25G NIC

17

= Limited hardware - x85 with 25G NIC
= One off test

17

= Limited hardware - x85 with 25G NIC
= One off test

= Untuned

17

Limited hardware - x85 with 25G NIC
One off test

= Untuned
= Limited scope
= Testpmd - 64 byte packets

17

Limited hardware - x85 with 25G NIC
One off test

= Untuned
= Limited scope

= Testpmd - 64 byte packets
= Immediate drop

17

Limited hardware - x85 with 25G NIC
One off test

= Untuned
= Limited scope

= Testpmd - 64 byte packets
= Immediate drop
= Current DPDK 19.11

17

Limited hardware - x85 with 25G NIC
One off test

= Untuned
= Limited scope

= Testpmd - 64 byte packets
= Immediate drop

= Current DPDK 19.11

= Single queue active

17

Test configuration

Testpmd Testpmd
tx_only rx_only

= Sender tx-only
= Receiver rx-only

= Observe Receive packets/sec

18

Capture and Tracing Performance

Test Disabled | Enabled
Pdump 0 -36.85
Pdump + eBPF 0 0
Lttng -0.42 -0.02

bpftrace -0.01 -56.72

19

Conclusion

Ongoing work

= DPDK packet capture

20

Ongoing work

= DPDK packet capture
= Pcapng support

20

Ongoing work

= DPDK packet capture
= Pcapng support
= capture filter

20

Ongoing work

= DPDK packet capture
= Pcapng support
= capture filter
= dumpcap (tshark) syntax

20

Ongoing work

= DPDK packet capture
= Pcapng support
= capture filter
= dumpcap (tshark) syntax

20

Ongoing work

= DPDK packet capture
= Pcapng support
= capture filter
= dumpcap (tshark) syntax

= DPDK trace points

20

Thank you

= Questions
= Thanks
= DPDK community
= LTTng
= eBPF developers
= Contact
stephen@networkplumber.org
@networkplumber

21

	Introduction
	Packet Capture
	Tracing
	Lttng
	Bpftrace

	Performance
	Conclusion

