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What is it

DataSketches [1] is an Apache Incubator [2] project. The project was
started at Yahoo and accepted in the the Apache Incubator in March of
2019. It is currently in production use at several companies.

DataSketches is a high-performance library of stochastic streaming
algorithms commonly called ”sketches” in the data sciences. Sketches are
small, stateful programs that process massive data as a stream and can
provide approximate answers, with mathematical guarantees, to
computationally difficult queries orders-of-magnitude faster than
traditional, exact methods.

Apache DataSketches are available in Java, C++, and Python.
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History

Sketching is a relatively recent development in the theoretical field of
Stochastic Streaming Algorithms (Also known as “Approximate Query
Processing”), which deals with algorithms that can extract information
from a stream of data in a single pass (sometimes called “one-touch”
processing) using various randomization techniques.

The term sketch, with its allusion to an artist’s sketch, has become the
popular term to describe these algorithms and associated data structures
that implement the theory.
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Common Sketch Properties

Single-pass, “one-touch” algorithms enable efficient processing in
either real-time or batch.

Mergeable algorithms enable parallel processing, which is critical for
large systems.

Space sub-linear algorithm not only start small but grow very slowly
or not at all as the size of the input stream grows.

Query results are approximate but within well defined error bounds
that are user configurable by trading off sketch size with accuracy.

Designed for Large-scale computing environments that must handle
Big Data.( e.g., Hadoop, Pig, Hive, Druid, Spark).

Quality you expect from Apache

Maven deployable and registered with The Central Repository.

Comprehensive unit tests and testing tools are provided.

Extensive documentation with the systems developer in mind.
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Case Study

Real-time Flurry, Before and After

Flurry: A system to manage data for mobile app developers. Captures
data from apps and provides reporting to developers.

Customers: > 250K Mobile App Developers

Data: 40-50 TB per day

Platform: 2 clusters X 80 Nodes = 160 Nodes

Node: 24 CPUs, 250GB RAM

Before Sketches After Sketches

VCS* / Mo. ≈ 80B ≈ 20B

Result Freshness Daily: 2 to 8 hours; Weekly: 3 days.
Real-time Results Not Feasible!

15 seconds!

*Virtual Core Seconds
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Quantiles

Estimates distribution, with well defined error bounds, of comparable
values from a stream.

Enables queries of quantile(rank), rank(quantile) as well as normal or
inverse Probability Mass Functions (PMF) or Cumulative Distribution
Functions (CDF) of the distributions of any numeric value from your raw
data in a single pass. This makes it relatively easy to produce frequency
histograms.

transform−−−−−→
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Java example: Using the quantile sketch

/* Create two sketches */

UpdateDoublesSketch time1Sketch =

DoublesSketch.builder ().build ();

DoubleStream stream = // get a time boxed double

stream

stream.forEach( time1Sketch :: update )

UpdateDoublesSketch time2Sketch =

DoublesSketch.builder ().build ();

DoubleStream stream = // get a time boxed double

stream

stream.forEach( time2Sketch :: update )
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Java example: Merging sketches

/* Load stored sketches */

DoublesSketch timeSketch1 = ...

DoublesSketch timeSketch2 = ...

/* Merge them and report */

DoublesUnion union = DoublesUnion.builder ().build();

union.update(time1Sketch);

union.update(time2Sketch);

DoublesSketch result = union.getResult ();
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Java example: Printing results

/* print Min , Median , Max values */

System.out.println(Arrays.toString(result.getQuantiles(

new double [] {0, 0.5, 1})));

/* define bins: (-inf ,-2), [-2,0), [0,2), [2,+inf) */

double [] bins = new double [] {-2, 0, 2};

/* Probability Histogram: */

System.out.println(Arrays.toString(result.getPMF(bins)));

/* Freqency Histogram */

double [] histogram = result.getPMF(bins);

for (int i = 0; i < histogram.length; i++) {

/* scale the fractions */

histogram[i] *= result.getN();

}

System.out.println(Arrays.toString(histogram));
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Count Distinct / Count Unique

Solves Computational Challenges Associated with Unique Identifiers

Estimating cardinality of a stream with many duplicates

Performing set operations (e.g., Union, Intersection, and Difference)
on sets of unique identifiers.

Estimates of the error bounds of the result can be obtained directly
from the result sketch

There are three families of Count Unique algorithms:

The Theta Sketch Framework algorithms that are tuned for operation
on the java heap or off-heap. Provides union, intersection and
difference operations on sketches.

The Hyper-Log Log (HLL) algorithms when sketch size is of utmost
concern but can only perform union operations on sketches.

The Compressed Probabilistic Counting (CPC) sketch. The CPC
sketch beats the HLL sketch in terms of accuracy per stored space.
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Frequent Items

Get the most frequent items (AKA heavy hitters) from a stream of items.

The accuracy of a Frequent Items Sketch is proportional to the configured
size of the sketch, the larger the sketch, the smaller is the epsilon
threshold that can detect Heavy Hitters.
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Tuple Sketch

An Associative sketch that extends Theta Sketches to perform associative
analysis.

Associative sketches that are useful for performing approximate join
operations and extracting other kinds of behavior associated with unique
identifiers by tracking additional summary data like impression counts or
clicks on unique identifiers.
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Sampling Sketches

A uniform sampling of a stream into a fixed size space.

This is a sketch that implements the famous Reservoir sampling algorithm.
It supports mergability and uses Java Generics. VarOpt sampling extends
the family to weighted sampling, additionally providing subset sum
estimates from the sample with provably optimal variance.
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Frequent Directions

Distributed, mergeable Singular Value Decomposition.

Part of a new separate sketches-vector package, Frequent Directions is in
many ways a generalization of the Frequent Items sketch to handle vector
data. This sketch computes an approximate singular value decomposition
(SVD) of a matrix, providing a projection matrix that can be used for
dimensionality reduction. SVD is a key technique in many recommender
systems, providing shopping suggestions based on a customer’s past
purchases compared with other similar customers.
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Additional Information

DataSketches overview from Apache:
http://datasketches.apache.org/docs/TheChallenge.html

Downloads and Maven access:
http://datasketches.apache.org/docs/downloads.html

Source from GitHub: https://github.com/apache?utf8=%E2%9C%

93&q=datasketches&type=&language=

Research background and references:
http://datasketches.apache.org/docs/Research.html

Online discussion:
https://groups.google.com/forum/#!forum/sketches-user

Mailing lists can be found on the Apache incubator site for
DataSketches:
https://incubator.apache.org/projects/datasketches.html
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