Relax-and-Recover (ReaR) Basics

with live demo on real hardware

By

Gratien D’haese

Johannes Meixner

© 2020 Gratien D’haese
Ask Yourself: Mean Time to Restore Service

- After deploying a bad software update or configuration?
- After upgrading the Operating System to a faulty version?
 - On 50 servers? On 500 servers?
- After deleting the hard disk / SAN LUN of your main database?
 - After deleting 20 LUNs?
- After deleting the hard disk / SAN LUN of a Hypervisor?
 - All the LUNs of a virtualization cluster?
- After flooding the data center?
Relax-and-Recover (ReaR) as (DR) solution

- ReaR is a tool that implements a DR work-flow for Linux
- Basically meaning:
 - Modular framework written in Bash
 - Easy to extend to own needs
 - Easy to deploy (set up and forget)
 - Integration for various Linux technologies
 - Integration with various back-up solutions
 - Attempts to make system recovery as easy as possible
- ReaR runs on-line (no downtime to create a DR image)
Introduction to Relax and Recover (ReaR)

- Proven solution at large enterprise customers
- ReaR established as standard solution for Linux disaster recovery in data centers
- Shipping with Fedora, SUSE and RHEL
- Integrates with many “commercial” backup software solutions, e.g. TSM, DP, NBU, NSR, ...
- Integrates with OS backup software solutions as well, e.g. GNU tar, rsync, bacula, bareos, ...
- Scales well with large amounts of servers
Use the Best Tool for the Restore Job

Configuration Management or ReaR

Provisioning Automation or ReaR

Server
- Configuration
- OS
- App

Software Management or ReaR

Specialized Backup Tooling

OS Files

App Data

Relax-and-Recover (ReaR) Basics
DR Flow – BACKUP and OUTPUT

BACKUP
Basic OS archive (tar, rsync)

internal

external

OUTPUT
Rescue boot image

BACKUP
Basic OS archive (external backup sw)
Decide on DR strategy

• Which backup mechanism to use?
 • Internal backup: GNU tar, rsync
 • External backup: bacula, bareos, commercial backup solution

• Where will the backups reside?
 • NFS share, CIFS share, external USB disk, tape, local spare disk, cloud storage, DVD
 • Remote network and/or storage location

• How shall we boot the rescue image?
 • Via DVD (ISO image), tape (OBDR), network (PXE), USB disk
Basics of ReaR

- Main script is `/usr/sbin/rear`
- Shell scripts are stored under `/usr/share/rear`
- Scripts are kept together according work-flows
 - `mkrescue` (only make rescue image)
 - `mkbackup` (including make rescue image)
 - `recover` (the actual recovery part)
- Configuration via bash variables (`/etc/rear/local.conf`)
- User guide `/usr/share/doc/rear-*/relax-and-recover-user-guide.html` and man page (“man rear”)
- Web-site: `relax-and-recover.org`
BACKUP and OUTPUT methods

- BACKUP variable defines the “backup” method
 - NETFS, RSYNC, DUPLICITY,
- BACKUP_URL variable defines the location where to store the backup archive
- OUTPUT variable defines the “output” method
 - ISO, PXE, OBDR, USB
- OUTPUT_URL variable defines the location where to store the output image (ISO image, pxe configuration, extlinux configuration)
BACKUP type NETFS

- **OUTPUT=ISO**
 - **BACKUP=NETFS**
 - **(NFS|CIFS|local) disks**

- **OUTPUT=OBDR**
 - **BACKUP=NETFS**
 - **Tape drive**

- **OUTPUT=USB**
 - **BACKUP=NETFS**
 - **External USB disks**

- **OUTPUT=PXEN**
 - **BACKUP=NETFS**
 - **pxelinux network**

- **OUTPUT=ISO**
 - **pxelinux network**

- **OUTPUT=ISO**
 - **extlinux**

Relax-and-Recover (ReaR) Basics
Location BACKUP_URL

- BACKUP=NETFS

- BACKUP_URL can be
 - File type: BACKUP_URL=file:///directory/
 - NFS type: BACKUP_URL=nfs://nfs-server/directory/
 - CIFS type: BACKUP_URL=cifs://samba/directory/
 - USB type: BACKUP_URL=usb:///dev/disk/by-label/REAR-000
 - ISO type: BACKUP_URL=iso://backup
 - Tape type: BACKUP_URL=tape:///dev/nst0
Backup Program

• BACKUP=NETFS

• /usr/share/rear/conf/default.conf
 • Default: BACKUP_PROG=tar
 • However, BACKUP_PROG=rsync is possible for local attached storage
 • BACKUP_PROG_COMPRESS_OPTIONS="--gzip"
 • BACKUP_PROG_COMPRESS_SUFFIX=".gz"
 • BACKUP_PROG_EXCLUDE=('/tmp/*' '/dev/shm/*')
Example Configuration Files

ls /usr/share/rear/conf/examples/

borg-example.conf
RHEL6-NETFS-of-NBU-master-example.conf
SLE11-ext3-example.conf
SLE12-SP1-btrfs-example.conf
PXE-booting-example-with-URL-style.conf
RHEL7-ISO-Oracle-example.conf
SLE11-SLE12-SAP-HANA-UEFI-example.conf
SLE12-SP2-btrfs-example.conf
rescue-and-backup-on-same-ISO-image-example.conf
RHEL7-PPC64LE-Mulitpath-PXE-GRUB.conf
SLE12-btrfs-example.conf
USB-and-Samba-example.conf
ReaR ‘dump’ Workflow

Configuration tree:

- Linux-i386.conf : OK
- GNU/Linux.conf : OK
- Fedora.conf : missing/empty
- Fedora/i386.conf : missing/empty
- Fedora/7.conf : missing/empty
- Fedora/7/i386.conf : missing/empty
- RedHatEnterpriseServer.conf : missing/empty
- RedHatEnterpriseServer/i386.conf : missing/empty
- RedHatEnterpriseServer/7.conf : missing/empty
- RedHatEnterpriseServer/7/i386.conf : missing/empty
- site.conf : OK
- local.conf : OK
COPY_AS_IS=("${COPY_AS_IS[@]}" /etc/install \
/usr/bin/perl /usr/lib64/perl5/CORE/libperl.so \
/usr/bin/seq /sbin/lspci)
RESULT_FILES=($VAR_DIR/sysreqs/Minimal_System_Requirements.txt)
OUTPUT=ISO
ONLY_INCLUDE_VG=("vg00")
BACKUP=NETFS
NETFS_URL=nfs://nas.example.com/vol/linux/linux_images_1/node05.example.com
NETFS_PREFIX=image
NETFS_KEEP_OLD_BACKUP_COPY=y
ONLY_INCLUDE_VG=("vg00")
BACKUP=NETFS
BACKUP_URL=nfs://nas.example.com/vol/linux/linux_images_1/node69.example.com
BACKUP_PROG_EXCLUDE=(${BACKUP_PROG_EXCLUDE[@]} '/app/docker/*' '/app/example/docker/*')
NETFS_PREFIX=image
NETFS_KEEP_OLD_BACKUP_COPY=yes
AUTOEXCLUDE_DISKS=no
CLONE_USERS=("${CLONE_USERS[@]}" oracle)
CLONE_GROUPS=("${CLONE_GROUPS[@]}" dba)
SSH_ROOT_PASSWORD="relax"
TIMESYNC=NTP
TIMESYNC_SOURCE=10.10.10.10
COPY_AS_IS=("${COPY_AS_IS[@]}" /etc/oratab clear)
ONLY_INCLUDE_VG=("vg00")
BACKUP=NETFS
BACKUP_URL=nfs://nas.example.com/vol/linux/linux_images_1/node41.example.com
BACKUP_PROG_EXCLUDE=(${BACKUP_PROG_EXCLUDE[@]} '/DBEXPORT/*' '/oracle/*/mirr*' '/oracle/*/or*' '/oracle/*/sap*' '/oracle/*/flash*')
NETFS_PREFIX=image
NETFS_KEEP_OLD_BACKUP_COPY=yes
AUTOEXCLUDE_DISKS=no
CLONE_USERS=("${CLONE_USERS[@]}" oracle)
CLONE_GROUPS=("${CLONE_GROUPS[@]}" dba)
SSH_ROOT_PASSWORD="relax"
TIMESYNC=NTP
TIMESYNC_SOURCE=10.10.10.10
COPY_AS_IS=("${COPY_AS_IS[@]}" /etc/oratab clear)
/etc/rear/local.conf (DB System Example)

ONLY_INCLUDE_VG=("vg00")
BACKUP=NETFS
BACKUP_URL=nfs://nas.example.com/vol/linux/linux_images_1/node21.example.com
BACKUP_PROG_EXCLUDE=(${BACKUP_PROG_EXCLUDE[@]} '/u02/ora*' '/u02/recoveryarea01')
NETFS_PREFIX=image
NETFS_KEEP_OLD_BACKUP_COPY=yes
AUTOEXCLUDE_DISKS=no
CLONE_USERS=("${CLONE_USERS[@]}" oracle)
CLONE_GROUPS=("${CLONE_GROUPS[@]}" dba)
TIMESYNC=NTP
TIMESYNC_SOURCE=10.10.10.10
SSH_ROOT_PASSWORD="relax"
COPY_AS_IS=("${COPY_AS_IS[@]}" /etc/oratab clear)
POST_RECOVERY_SCRIPT=/mnt/local/u02/restore_oracle_u02_database_directory.sh
Live ReaR recovery on real hardware

NOT ALL BACKUP IS CREATED EQUAL