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Goals: What are the goals

Indexing encrypted data using Bloom filters is not a new idea. There have
been several published papers that explore this problem [7, 4, 2, 10]. What
has changed is the introduction of multidimensional Bloom filters [5, 13]
that allow fast searching of a large number of Bloom filters.

What are we attempting
Identify encrypted documents or records that contain specific data;

Do not require decryption of documents for searching;

Do not ”leak” data through the index;

Do not ”leak” data through queries.

What are we excluding
Issues with shared keys, PKI, key distribution, etc.
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The Process: Write

The write process

Extract properties and build
Bloom filter;

Encrypt the document;

Store encrypted document and
receive storage ID;

Store Bloom filter with
encrypted storage ID in Bloom
filter storage/multidimensional
Bloom filter [12].

If storing 1000 filters or less a linear
storage solution is more effective
than a multidimensional Bloom
filter [13].
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Read

The read process

Hash desired properties into a
Bloom filter;

Query the Bloom filter storage
for matches and retrieve Storage
ID(s);

Read the encrypted document(s)
from document storage;

Decrypt the document(s) and
filter false positives.
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Introduction to the Bloom Filter: What is it

A probabilistic data structure defined by Burton Bloom in 1970 [3];

Constructed by hashing data multiple times;

Can be considered as a bit vector representing a set of objects;

Filters can be merged together: filter2 ∪ filter1

Membership of filter1 in the set filter2 can be checked
filter1 ∩ filter2 == filter1

Can yield false positives but never false negatives.
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How is it defined

Bloom filters are constrained by: the number of elements in the set, the
number of hash functions, the number of bits in the vector, and the
probability of false positives.

p is the probability of false positives,

n is the number of elements in the set represented by the Bloom filter,

m is the number of bits, and

k is the number of hash functions.

Mitzenmacher and Upfal [9] have shown that the relationship between
these properties is:

p = (1− e−kn/m)k

Thomas Hurst provides a good calculator where the interplay between
these values can be explored [8].
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How is it constructed

Algorithm 1: How to construct a Bloom filter

Result: A populated bit vector
byte[][] buffers // the list of buffers to hash
bit[m] bitBuffer;
for buffer in buffers do

for i=1 to k do
long h = hash( buffer, i );
int bitIdx = h mod m;
bitBuffer[bitIdx] = 1;

end

end

Construct a Bloom filter using Apache Commons Collections [1]
HashFunction hFunc = new Murmur128x86Cyclic ();

Shape shape = new Shape( hFunc , 10, 1/2000000);

DynamicHasher hasher = new DynamicHasher.Builder( hFunc ).with(

buffer ).build(); // single buffer example

BloomFilter filter = new BitSetBloomFilter( hasher , shape );
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Data encoding issues

Interval (decimal numeric) data does not lend itself to Bloom filter
retrieval. Solution: Use ordinal values (e.g. small, medium, large) or
mathematically transform the value to an integer (e.g. round decimal
latitude or longitude values).

Some properties my have similar values leading to larger number of
hash conflicts. Solution: Prefix the value with the property name or
abbreviation. For example if tracking automobile interior and exterior
colors the values for a white care with red interior could be encoded
as ”exterior:white” and ”interior:red”.
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Example: GeoNames is our data

GeoNames is a geographical database is available for download free of
charge under a creative commons attribution license [6]. It contains
over 25 million geographical names and consists of over 11 million
unique features.

Each object has 20 properties of which we will select: the feature
code, the country code, and the first 10 names as the properties to
index.

There are only 680 unique features codes and 252 country codes
defined in the GeoNames data
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Bloom encrypted index demo

The demo code [11] uses a multidimensional Bloom filter [5] to index
2 million (2e6) GeoName objects utilizing a 128 bit Murmur3 x86
hash implementation. The Bloom filter shape specifies: n = 10 and
p = 1.0/2000000 which yields m = 302, k = 21 and p ≈ 0.0000005
(1 in 2001957).

The multidimensional Bloom filter library [12] uses a Hasher that
does not retain the buffer bytes, just the hashed values.

After the demo loads the data it reports that it has loaded 2 million
items resulting in 704899 unique filters.

searching for ”Las Vegas” and ”PPL” (GeoNames feature code for
Populated Place) yields 8 results. All are named ”Las Vegas” and
have ”PPL” designations.

searching for ”want” yields 3 results. One named ”Want” and the
other 2 false positives.
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Demo

DEMO
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Goals Review: Did we meet the goals

Identify encrypted documents or records that contain specific data -
Yes;

Do not require decryption of documents for searching - Yes;

Do not ”leak” data through the index - Mostly. Brute force word
encryption and analysis of Bloom filters may yield some data but
some a priori knowledge is required;

Do not ”leak” data through queries - Mostly. Queries do leak the
number of terms being searched and a brute force term encryption
may be able to match them. A priori knowledge would help here.
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Additional Info: Standard uses for Bloom filters

Typically used where hash table solutions are too memory intensive
and false positives can be addressed; for example a gating function to
a longer operation. (e.g. determine if a database lookup should be
made);
In bioinformatics they are used to test the existence of a k-mer in a
sequence or set of sequences. The k-mers of the sequence are indexed
in a Bloom filter, and any k-mer of the same size can be queried
against the Bloom filter.
In database engines used to perform joins. A bloom filter is
constructed for the one side of the join. During the join the other side
values are checked against the bloom filter first.
In the context of service discovery in a network, Bloom filters have
been used to determine how many hops it is from a specific node to a
node providing a desired service.
Bloom filters are often used to search large chemical structure
databases. The properties of the atom are encoded into Bloom filters
that are then stored in a multidimensional Bloom filter.
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What is a multidimensional Bloom filter

A multidimensional Bloom filter is a searchable collection of Bloom
filters [5]. A simple list of Bloom filters is the simplest and most common
form. However as the number of filters to search increases it becomes
evident that a method of indexing is desired.

Indexing bloom filters is not trivial as the sorting algorithms that underlie
most indexes require an ordinal comparison. However Bloom filter
comparisons do not produce ordinal results due to the bit level intersection
calculation. Bloom filter indexes are also hampered by the extreme speed
of the bit level intersection calculation. Warren, et.al. [13] have shown
that for fewer than 1000 entries there are no multidimensional Bloom
filters that are faster than the linear search.
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