
Lazy distribution of
container images
Current implementation status of containerd remote snapshotter

Akihiro Suda

FOSDEM (February 1, 2020)

Credit to Kohei Tokunaga (NTT) for containerd impl. & benchmark scripts

• Run containers before completion of
downloading the images

• Lots of alternative image formats are
proposed to support this

• stargz is getting wide adoption
(containerd & Podman)

2

Summary

Demo:
Lazy distribution of
docker.io/library/python:3.7

The problems of the current
Docker / OCI format

• Open Containers Initiative (OCI) defines the standard
specifications for containers
– Docker/Moby, Podman, Kubernetes (containerd, CRI-O, …), Singularity…

• OCI Image Spec: defines the tar ball structure and the JSON
metadata format
– Based on Docker Image Manifest V2 Schema 2

• OCI Distribution Spec: defines the API for distributing images
via HTTP
– Based on Docker Registry HTTP API

• Focuses on legacy rather than on innovation ☹

5

Current Docker / OCI format

• Appeared in 1970s

• Originally designed for
magnetic tapes

• No random access

6

TAR: Tape ARchiver

https://en.wikipedia.org/wiki/PDP-11

https://en.wikipedia.org/wiki/PDP-11

• Without scanning the whole "tape“,
file metadata cannot be listed up

→ Can't be mounted as a filesystem

7

Problem 1: Requires scanning the whole "tape"

Metadata 0

File 0

Metadata 1

File 1

Metadata {n-1}

File {n-1}

Terminal zero bytes

...

File name, permission, ...

Content

• Having an external index file can solve the problem?

→ No, because gzip can’t be seek-ed
 (discussed later)

8

Problem 1: Requires scanning the whole "tape"

Metadata 0

File 0

Metadata 1

File 1

Metadata {n-1}

File {n-1}

Terminal zero bytes

...
Metadata 0

Metadata 1

Metadata {n-1}

…

Index file

• A registry might contain very similar images
– Different versions

– Different architectures

– Different configuration files

• Tar balls of these images are likely to waste the storage for
identical/similar files

• But not a serious issue when you have enough budget for the
cloud storage

9

Problem 2: No deduplication

1. Requires scanning the whole "tape"

2. No deduplication

10

Problems of Docker / OCI image format

https://en.wikipedia.org/wiki/Magnetic_tape

The main focus
towards lazy
distribution

https://en.wikipedia.org/wiki/Magnetic_tape

• “pulling packages accounts for 76% of container start time, but
only 6.4% of that data is read.”
– Harter, Tyler, et al. "Slacker: Fast Distribution with Lazy Docker

Containers." FAST 2016

11

Why do we want lazy distribution?

https://www.usenix.org/system/files/conference/fast16/fast16-papers-harter.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-harter.pdf

• “dev stage” images of multi-stage Dockerfiles
– No need to consider tolerance against remote registry failures

(because `RUN apt-get install` instructions are already flaky anyway)

12

Expected use-cases

FROM example.com/heavy-dev-env:lazy AS dev
RUN apt-get update && \
 apt-get install -y some-additional-libs
COPY src .
RUN ./configure && \
 make static && \
 cp bin/foo /foo

the stage switches here

FROM scratch

COPY --from=dev /foo /foo
ENTRYPOINT /foo

• Other use-cases are also valid, but mind fault tolerance
(until the image gets 100% cached locally)
– Kubernetes readinessProbe

• FaaS

• Web apps with huge number of HTML files and graphic files

• Jupyter Notebooks with big data samples included

• Full GNOME/KDE desktop
– Will 2020 be the year of the containerized Linux desktop?

13

Expected use-cases

Our first attempt (2017)

Our first attempt (2017)
… and post-mortem

• No tar balls

• Composed of a protobuf index file (continuity manifest) +
content-addressable blob files

16

Our first attempt : FILEgrain (2017)

https://www.slideshare.net/AkihiroSuda/filegrain-transportagnostic-finegrained-contentaddressable-container-image-layout
https://www.slideshare.net/AkihiroSuda/filegrain-transportagnostic-finegrained-contentaddressable-container-image-layout

• No tar balls

• Composed of a protobuf index file (continuity manifest) +
content-addressable blob files

17

Our first attempt : FILEgrain (2017)

message Metadata {
 repeated string path;
 int64 uid;
 int64 gid;
 uint32 mode;
 uint64 size;
 repeated string sha256Digest;
 ...
}

Metadata 0

Metadata 1

Metadata {n-1}

…

blobs/sha256/deadbeef…

blobs/sha256/cafebabe…

• Incompatibility with legacy tar balls

• Chicken-and-egg: hard to finalize the spec when no
implementation exists; hard to promote implementation when
the spec is not finalized

• Use-cases were unclear; didn’t need to focus on deduplication

• Performance overhead due to huge numbers of HTTP requests
for reading small files

18

FILEgrain post-mortem

The solution in 2020: stargz

• Proposed by Brad Fitzpatrick (Google, at that time)
for accelerating the CI of the Go language project

• No focus on data deduplication

20

stargz: seekable tar.gz

Metadata 0
File 0

Metadata 1
File 1

Metadata {n-1}
File {n-1}

Terminal zero bytes

...
gzip

legacy tar.gz
Metadata 0

File 0
gzip

Metadata 1
File 1

gzip

...

Metadata {n-1}
File {n-1}

gzip

Metadata for s.i.j.

stargz.index.json

(Metadata 0…{n-1})
gzip

Terminal zero bytes
empty stream

stargz

gzip

• Fully compatible with legacy tar.gz

• But contains extra “stargz.index.json” entry

21

stargz: seekable tar.gz

Metadata 0
File 0

Metadata 1
File 1

Metadata {n-1}
File {n-1}

Terminal zero bytes

...
gzip

legacy tar.gz
Metadata 0

File 0
gzip

Metadata 1
File 1

gzip

...

Metadata {n-1}
File {n-1}

gzip

Metadata for s.i.j.

stargz.index.json

(Metadata 0…{n-1})
gzip

Terminal zero bytes
empty stream

stargz

gzip

• Only stargz.index.json is required for mounting the image

• Actual files in the archive can be fetched on demand
(when HTTP Range Requests are supported)

22

stargz: seekable tar.gz

gzip

This gzip header contains pointer
for stargz.index.json

stargz

Metadata 1
File 1

gzip

...

Metadata {n-1}
File {n-1}

gzip

Metadata for s.i.j.

stargz.index.json

(Metadata 0…{n-1})
gzip

Terminal zero bytes
empty stream

Metadata 0
File 0

gzip

• containerd: https://github.com/ktock/stargz-snapshotter
– By Kohei Tokunaga (NTT)
– Implemented as a containerd snapshotter plugin

– stargz archives are mounted as read-only FUSE filesystems
– OverlayFS is used for supporting writing

– Supports more aggressive optimization (discussed later)

• Podman: https://github.com/giuseppe/crfs-plugin
– By Giuseppe Scrivano (Red Hat)
– Implemented as a fuse-overlayfs plugin

23

stargz adoption in the ecosystem

https://github.com/ktock/stargz-snapshotter
https://github.com/giuseppe/crfs-plugin

• Profiles actual file access patterns by running an equivalent of
docker run
– Future: static analysis using ldd(-ish) ? Machine learning?

• Reorders file entries in the archive so that relevant files can be
prefetched in a single HTTP request

24

stargz optimizer for containerd

/usr/bin/apt-get

/bin/ls

/bin/vi

/lib/libc.so

/lib/libjpeg.so

/usr/bin/python3

.../usr/lib/python3/.../foo

/usr/lib/python3/.../bar

/app.py

/bin/ls

/app.py
/usr/bin/python3

/lib/libc.so

/usr/lib/python3/.../foo

/usr/lib/python3/.../bar

.../bin/vi

/lib/libjpeg.so

/usr/bin/apt-get

• Registry: Docker Hub (docker.io)

• containerd host location: EC2 Oregon

• Benchmark: execute typical base images with
“compile hello world” command

25

Benchmark results

26

Benchmark results

Credit to Kohei Tokunaga (NTT) for containerd impl. & benchmark scripts

27

Benchmark results

Credit to Kohei Tokunaga (NTT) for containerd impl. & benchmark scripts

28

Benchmark results

Credit to Kohei Tokunaga (NTT) for containerd impl. & benchmark scripts

29

Benchmark results

Credit to Kohei Tokunaga (NTT) for containerd impl. & benchmark scripts

• Impl: Parallelize HTTP operations across image layers
– https://github.com/ktock/stargz-snapshotter/issues/37

• Spec: Use zstd instead of gzip (“starzstd”?)
– Proposed by Giuseppe

https://github.com/golang/go/issues/30829#issuecomment-541532402

– Suitable for images with many small files

– Not compatible with OCI Image Spec v1.0.1

– Compatible with OCI Image Spec v.Next

30

More optimizations are to come

https://github.com/ktock/stargz-snapshotter/issues/37
https://github.com/golang/go/issues/30829#issuecomment-541532402

• BuildKit: modern OCI image builder
– Concurrent execution
– Efficient caching
– Rootless
– (pseudo-)daemonless
– Clustering on Kubernetes
– And a lot of innovative features

• stargz support is on our plan, stay tuned!
– Producing stargz images
– Consuming stargz images as base images

31

stargz integration for BuildKit

• CernVM-FS
– Not compatible with OCI tar balls

– Has been already widely deployed in CERN and their friends

– Implementation available for containerd:
https://github.com/ktock/remote-snapshotter/pull/27

• Unofficial “OCI v2”
– Proposed by Aleksa Sarai (SUSE)

– Not compatible with OCI v1 tarballs

– Focuses on deduplication, using Restic algorithm

– WIP implementation available for umoci (image manipulation tool):
https://github.com/openSUSE/umoci/tree/experimental/ociv2

– No runtime implementation seems to exist

32

Other post-OCI formats

https://github.com/ktock/remote-snapshotter/pull/27
https://github.com/openSUSE/umoci/tree/experimental/ociv2

• IPCS
– Proposed by Edgar Lee (Netflix)

– Built on IPFS (P2P CAS) protocol

– Not compatible with OCI tar balls

– Implementation available for containerd:
https://github.com/hinshun/ipcs

• Azure Container Registry “Project Teleport”
– Built on SMB protocol and VHD images

– Not FLOSS

33

Other post-OCI formats

https://github.com/hinshun/ipcs

• Lots of alternative image formats are proposed for lazy
distribution, but compatibility matters

• stargz is getting wide adoption (containerd & Podman)

• containerd supports sort+prefetch optimization for stargz
https://github.com/ktock/stargz-snapshotter

34

Recap

https://github.com/ktock/stargz-snapshotter

• Valid & invalid use cases?

• More efficient optimization techniques?

• Issues/PRs are welcome at
https://github.com/ktock/stargz-snapshotter
(Expected to be moved under github.com/containerd soon)

35

Request for comments

https://github.com/ktock/stargz-snapshotter
https://github.com/containerd

