
FOSDEM’20 • Brussels, 2020-02-02

Tools and Mechanisms to Debug BPF Programs

Quentin Monnet
@qeole

https://twitter.com/qeole

eBPF Programming

extended Berkeley Packet Filter:

• User-written programs, usually compiled from C (or Go, Rust, Lua…)
with clang/LLVM, to assembly-like bytecode

• Programs are injected into the kernel with the bpf() system call

• Verifier: programs terminate, are safe

• In-kernel interpreter, JIT (Just-in-Time) compiler

• Once loaded, programs can be attached to a hook in the kernel

• 64-bit instructions, 11 registers, 512 B stack, not Turing-complete

• Additional features: “maps”, kernel helper functions, BTF, …

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 2/42

eBPF Workflow

Userspace

Kernel

(JIT compiler)

Attach point

eBPF bytecode

C program

bpf() syscall

Verifier

LLVM Management

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 3/42

eBPF Use Cases

Main use cases:

• Networking (tc, XDP: driver-level hook)

• Tracing, monitoring (think DTrace)

• Socket filtering (cgroups)

• Security (LSM, work in progress)

• And more!

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 4/42

Outline

• (Reminder on eBPF… DONE)

• The tools to inspect eBPF objects, at each step of the workflow

• Getting familiar with bpftool

• Next steps for BPF introspection and debugging

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 5/42

Inspecting BPF Objects

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 6/42

eBPF Workflow

Userspace

Kernel

(JIT compiler)

Attach point

eBPF bytecode

C program

bpf() syscall

Verifier

LLVM Management

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 7/42

Compile Time

Objective:

• Make sure the eBPF bytecode is generated as intended when compiling
from C to eBPF

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 8/42

Compile Time: Compile and Dump

• Compile with clang/LLVM (or gcc, but fewer BPF features supported):
$ clang -O2 -emit-llvm -c sample.c -o - | \

llc -march=bpf -mcpu=probe -filetype=obj -o sample.o

• Dump instructions from object file with llvm-objdump (v4.0+)
(prior to kernel injection, relocation, rewrites)
$ llvm-objdump -d -r -print-imm-hex sample.o

sample.o: file format ELF64-BPF

Disassembly of section .text:
func:

0: b7 00 00 00 00 00 00 00 r0 = 0
1: 95 00 00 00 00 00 00 00 exit

• If -g is passed to clang, llvm-objdump -S can dump the original C code

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 9/42

Compile Time, in Two Steps: eBPF Assembly

• Compile from C to eBPF assembly file
$ clang -target bpf -S -o sample.S sample.c
$ cat sample.S

.text

.globl func # -- Begin function func

.p2align 3
func: # @func
%bb.0:

r0 = 0
exit

-- End function

• … Hack…

• Then compile from assembly to eBPF bytecode (LLVM v6.0+)
$ clang -target bpf -c -o sample.o sample.S

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 10/42

eBPF Workflow

Userspace

Kernel

(JIT compiler)

Attach point

eBPF bytecode

C program

bpf() syscall

Verifier

LLVM Management

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 11/42

Load Time

Objective:

• Load program and pass the verifier, or understand why it is rejected

Resources:

• libbpf / bpftool / ip / tc / bcc: load or list programs, manage objects
• Output from verifier logs, libbpf, kernel logs, extack messages
• Documentation (filter.txt, Cilium guide)

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 12/42

The Kernel eBPF Verifier: Checking Programs for Safety

The verifier performs checks on control flow graph and individual insns:

• Erroneous syntax (unknown or incorrect usage for the instruction)
• Too many instructions or maps or branches
• Back edges (i.e. loops, not bounded) in the control flow graph
• Unreachable instructions
• Jump out of range
• Out of bounds memory access
• Access to forbidden context fields (read or write)
• Reading access to non-initialized memory (stack or registers)
• Use of forbidden helpers for the current type of program
• Use of GPL helpers in non-GPL program (mostly tracing)
• R0 not initialized before exiting the program
• Memory access with incorrect alignment
• Missing check on result from map_lookup_elem() before accessing map
element

• …

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 13/42

The Kernel eBPF Verifier: Example message

Possible out-of-bound access to packet data (no check on packet length):

ip link set dev eth0 xdp object sample.o

Prog section 'action' rejected: Permission denied (13)!
- Type: 6
- Instructions: 41 (0 over limit)
- License: GPL

Verifier analysis:

0: (bf) r2 = r1
1: (7b) *(u64 *)(r10 -16) = r1
2: (79) r1 = *(u64 *)(r10 -16)
3: (61) r1 = *(u32 *)(r1 +76)
invalid bpf_context access off=76 size=4

Error fetching program/map!

Problem: error messages good for developers, but cryptic for newcomers

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 14/42

Make Sure to Get Verifier Information

Still, we do want the messages!

• Use debug flags when available
• Debug buffer for verifier logs (pass to bpf())
• Debug flag for libbpf
• Activate both in bpftool with --debug

• Interpret information:
• Search the docs, Documentation/networking/filter.txt, Cilium guide
• Read kernel code
• To do: some kind of documentation/FAQ detailing the errors?

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 15/42

Program is Loaded: Introspection

We have passed the verifier! The program is loaded in the kernel

• For map and program introspection: bpftool
• List maps and programs
• Load a program, pin it
• Dump program instructions (eBPF or JIT-ed)
• Dump and edit map contents
• etc.

We will come back to bpftool later

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 16/42

BTF: BPF Type Format

BTF objects embed debug information on programs and maps
They are also use internally by the kernel for some advanced BPF features

• Embed BTF information when compiling programs:
Compile with LLVM v8+, use -g flag

• For maps, some wrapping needed in the C source code
struct my_value { int x, y, z; };

struct {
int type;
int max_entries;
int *key;
struct my_value *value;

} btf_map SEC(”.maps”) = {
.type = BPF_MAP_TYPE_ARRAY,
.max_entries = 16,

};
(See kernel commit abd29c931459)

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 17/42

BTF: BPF Type Format

Exemple: Program dump from kernel, with C source code

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 18/42

eBPF Workflow

Userspace

Kernel

(JIT compiler)

Attach point

eBPF bytecode

C program

bpf() syscall

Verifier

LLVM Management

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 19/42

Runtime

Objective:

• Understand why a program does not run as intended

Several solutions

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 20/42

Debugging at Runtime with bpf_trace_printk()

• eBPF helper bpf_trace_printk()
Prints to /sys/kernel/debug/tracing/trace
Example snippet:
const char fmt[] = ”First four bytes of packet: %x\n”;
bpf_trace_printk(fmt, sizeof(fmt), *(uint32_t *)data);

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 21/42

Debugging at Runtime with Perf Events

• “Perf event arrays”, more efficient than bpf_trace_printk()
Example: dump data from packet
struct bpf_map_def SEC(”maps”) pa = {

.type = BPF_MAP_TYPE_PERF_EVENT_ARRAY,

.key_size = sizeof(int),

.value_size = sizeof(int),

.max_entries = 64,
};

int xdp_prog1(struct xdp_md *xdp)
{

int key = 0;
bpf_perf_event_output(xdp, &pa, 0x20ffffffffULL, &key, 0);
return XDP_PASS;

}

• Contrary to bpf_trace_printk(), can be used with hardware offload

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 22/42

Debug BPF with BPF

BPF can be used for tracing, and comes to the rescue

• Possible to attach tracing BPF programs at entry and exit of a
networking BPF program (Linux 5.5)

• E.g. get packet data in input and/or output of the program
• See tools/testing/selftests/bpf/progs/test_xdp_bpf2bpf.c and related
• Not sure if compatible with tracing programs?

• Use bcc or bpftrace to examine what happens in the kernel (can also be
used at verification time to follow verification steps)

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 23/42

Testing Programs: BPF_PROG_TEST_RUN

BPF_PROG_TEST_RUN subcommand for the bpf() system call

• Manually run a program with given input data and context
• Output data and context are retrieved

Limitations:

• Not available for all programs (mostly networking for now)
• Tracing: How to check kernel data structures are changed?
• Some BPF helpers hard to support (bpf_redirect() etc.)
• Non-root accessibility would be nice?
• (Proposal on the topic for next Netdev conference in March 2020)

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 24/42

Statistics for Programs

Statistics for BPF programs: completion time and number of runs

• Activate (slight overhead) with:
sysctl -w kernel.bpf_stats_enabled=1

• Displayed by e.g. bpftool:

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 25/42

Debugging at Runtime: Miscellaneous

Additional tools that might be of use:

• Perf has support for annotating JIT-ed BPF programs (e.g. perf top)

• User space BPF machines: uBPF, rbpf
(Features missing, no verifier, but can run with debugger)

• tools/bpf/bpf_dbg.c (legacy cBPF only)

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 26/42

eBPF Workflow

Userspace

Kernel

(JIT compiler)

Attach point

eBPF bytecode

C program

bpf() syscall

Verifier

LLVM Management

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 27/42

User Space Programming

Objectives:

• Debug or enhance a program managing eBPF objects
• Generally improve eBPF support in the toolchain

Solutions:

• We can rely on existing frameworks (bcc, bpftrace, libkefir…)

• Libraries for managing eBPF programs: libbpf (kernel tree,
tools/lib/bpf), libbcc (bcc tools)

• Probe BPF-related kernel features with bpftool

• strace: support for bpf() system call
strace -e bpf ip link set dev nfp_p0 xdpoffload obj prog.o

• valgrind: support for bpf() system call
valgrind bpftool prog show

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 28/42

Getting Familiar With Bpftool

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 29/42

Bpftool: List Programs

List all BPF programs loaded on the system

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 30/42

Bpftool: Dump Programs

Dump kernel-translated instructions

bpftool prog dump xlated id 4
0: (b7) r0 = 0
1: (95) exit

Dump JIT-ed instructions

bpftool prog dump jited id 4
0: push %rbp
1: mov %rsp,%rbp
4: sub $0x28,%rsp
b: sub $0x28,%rbp
f: mov %rbx,0x0(%rbp)

13: mov %r13,0x8(%rbp)
[...]
33: mov 0x18(%rbp),%r15
37: add $0x28,%rbp
3b: leaveq
3c: retq

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 31/42

Bpftool: Load, Attach Programs

Load a program:

bpftool prog load <program> <pinned_path>

Attach to socket:

bpftool prog attach <program> <attach type> <target map>

Or to cgroups:

bpftool cgroup attach <cgroup> <attach type> <program> [flags]

Or to tc, XDP:

bpftool net attach <attach type> <program> <interface>

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 32/42

Bpftool: Show Maps

List all maps loaded on the system:

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 33/42

Bpftool: Basic Map Operations

Retrieve first entry of array map (note: host endianness for the key):

Or dump all entries of a given map:

bpftool map dump id 182

Update a map entry (even works for prog array maps used for tail calls)

bpftool map update id 182 key 3 0 0 0 value 1 1 168 192

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 34/42

Bpftool: Probe Kernel Features

Check what BPF-related features are available on the system,
List program types, map types, BPF helpers available:

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 35/42

Bpftool: Test Runs

Test-run programs with user-defined input data and context:

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 36/42

More Bpftool!

Some other features:

• List programs per cgroup, per network interface, per tracing hook
• Can load several programs at once from single object file (loadall)
• Dump bpf_trace_printk() output: bpftool tracelog
• Dump data from event maps: bpftool map event_pipe id 42
• Generate skeleton header from .o file for management in user space
• Batch mode (bpftool batch file <file>)
• JSON support (-j|--json or -p|--pretty)
• Subcommand prefixes (bpftool p d i 42); Exhaustive bash completion
• And more!

See also https://twitter.com/qeole/status/1101450782841466880

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 37/42

https://twitter.com/qeole/status/1101450782841466880

Bpftool: Man Pages

More information:

• man 8 bpftool
• man 8 bpftool-prog, man 8 bpftool-map, etc.

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 38/42

Next Steps for eBPF Tooling and Debugging Facilities

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 39/42

Next Steps for eBPF Tooling

• BPF architecture
• More modularity for easier debugging? (see BPF extension programs)
• More informations on BPF objects from sysfs
• Improvements for test runs

• Actual debugging process: Implement a step-by-step debugger
• Run program in a VM, and freeze/unfreeze at each step?
• Extend BPF_PROG_TEST_RUN interface?
• Attach kprobes to every single instruction of program?

• Documentation
• Update existing documentation
• Create some troubleshooting guide/FAQ?

(Several of those ideas proposed for discussion at Netdev in March 2020)

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 40/42

Wrapping Up

eBPF programs do not run in user space: debugging is not trivial

But:

• Tooling is getting better and better: more tools, more complete
• We can dump insns at any stage of the process (llvm-obdjump, bpftool)
• We can print data (bpf_trace_printk(), perf event maps) at runtime
• We can do test runs in kernel, or to run in user space BPF frameworks
• BPF itself can be used to help debug verifier or other BPF programs

And hopefully more will come!

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 41/42

Thank you!

Questions?

Q. Monnet • Tools and Mechanisms to Debug BPF Programs 42/42

	Inspecting BPF Objects
	Getting Familiar With Bpftool
	Next Steps for eBPF Tooling and Debugging Facilities

