
Memcheck Reloaded:Memcheck Reloaded:
dealing with compiler-generated branchesdealing with compiler-generated branches

on undefined valueson undefined values

Julian Seward, jseward@acm.org

2 February 2020. FOSDEM. Brussels.

Motivation

Memcheck checks

 Whether memory accceses are to allowable locations

 (Relatively) easy

 Whether branches depend on undefined values

 (Relatively) difficult

 Low false positive rates are very important

 Circa 2005 Everything under control

 Circa 2015 Increasingly problematic – clang 3+, gcc 5+

 Overview

 Some definedness tracking examples

 The undefined-conditional-branch problem

 The solution

Some basics

For every bit of process state, Memcheck maintains a shadow (“V”) bit

all registers and memory locations are shadowed

1 means Undefined. 0 means Defined.

When program computes a result from operands ..
r = x + y

.. Memcheck computes definedness of result from definedness of operands
r# = ... x# ... y# ...

When program does a conditional branch, Memcheck checks definedness of the condition

and emits an error if undefined

As described in our Usenix 2004 paper (Seward & Nethercote)

http://valgrind.org/docs/memcheck2005.pdf

Tracking definedness in value flows

In principle ..

We know exact definedness behaviour of AND, OR, NOT

NOT: 0 → 1, 1 → 0, U → U

AND: (0,U) → 0, (1,U) → U, for non-U inputs as expected

Any arithmetic op can be reduced to an AND/OR/NOT formula

→ we can derive “exact” definedness propagation for any op

In practice ..

Way too expensive

Use cheap approximations

Mostly OK – undef value use hard to reason about

Value flows #2

Eg Integer Add

Simplest: all output bits are U if any input bit is U

10U0 +# 0001 → UUUU

Too crude .. can’t deal with “overwidth” adds

Better: we know undefinedness propagates only leftwards

10U0 +# 0001 → UUU1

Best: defined zeroes stop leftward propagation

10U0 +# 0001 → 10U1

Costs: circa, 3, 5, 10 insns

Value flows #3

Choose approximations from real-world experience

Add/Sub: inexact (“Better”) for address computations
exact (“Best”) for everything else

And/Or: exact: AND with 0, OR with 1 → Defined

Integer ==: defined 1 vs defined 0 makes result Defined

 even if all other bits undefined

Shifts tracked exactly

Most other ops approximated safely – input undefinedness pollutes entire output

Things it doesn’t know, eg:

Undefined * zero → Defined

x >=unsigned 101010000 → Defined even if lowest 4 bits of x are undefined

And this worked pretty well. Until ...

The Problem

… until .. complaints on this

int result

bool ok = compute_something(&result)

if (ok && result == 42) { … } ←------------- ERROR REPORTED!

Why? ‘cos clang/gcc compiled it like this:

if (result == 42 && ok) { … }

Compiler’s buggy. Right?

well actually

A && B == B && A if A is false whenever B is undefined

Program and compiler are correct, so why is this error reported?

Why is this a problem

Unit of analysis is “basic block”

- Straight line code ending in branch

- Memcheck assumes every conditional branch is “important”

int result

bool ok = compute_something(&result)

if (result == 99 && ok) { … STUFF .. }

.. AFTER ..

 ok = call compute_something

 result == 99 ?

 ok == true ?

 STUFF

 AFTER

t

t

f

f

Why is this a problem #2

Can’t “see” over multiple blocks

Basic-blockness deeply wired in

What to do?

Complex

”If an undef value use is observed in a conditional branch, only report it if the architected
machine state is changed before we arrive at the instruction which is the immediate
postdominator of the branch ...”

.. or something like that.

Naaah

Way too complex

What do to?

Summer 2018

Depressed. “End of the road for Memcheck”

Winter 2018

Depressed. (Cold and dark)

Summer 2019

Hmm. Didn’t we already solve this problem before?

Same as pure-value-flow for AND

AND 0, Undefined == AND Undefined, 0 == Defined-0

Problem is, the AND is spread over multiple blocks

Need to “recover”/”reconstruct” it

So here’s the plan

Transform this ... into ... this

 A A

 C1 = ... C1 = ...

 C1 ? B if C1

 C2 = ... if C1, else false

 C1 & C2 ?

 B

 C2 = ...

 C2 ?

 X Y X Y

Be careful about B when C1 is false

Now we can use value-level exact instrumentation for &

t

t

f

f

t f

Implementation feasibility

Don’t want to do this per-arch (ARM, x86, Power, Mips, S390)

But their branch insns are all different

Leverage Valgrind’s IR infrastructure

Translate to IR

normalise (a.k.a ”optimise”)

pattern-match

transform

This will slow down the JIT

True. But not much

Backend costs dominate

This is front-end

Same mechanism handles source level && and ||

So, in conclusion ..

Memcheck lives to ride another day \o/ \o/ \o/

Can run Firefox compiled with clang -O2, gcc -O2, with zero false positives (of this kind)

Available on x86 32/64, arm 32/64, power 32/64

MIPS 32/64 and S390 crash for unknown reasons

On those targets, is disabled until it can be fixed

In the tree now; seems stable

Will be in Valgrind 3.16

Thank you for listening!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

