
strace: fight for performance
Eugene Syromiatnikov, Dmitry Levin

FOSDEM 2020

What is strace?

strace is a diagnostic, debugging and instructional
userspace utility for Linux. It is used to monitor and
tamper with interactions between processes and the
Linux kernel, which include system calls, signal deliveries,
and changes of process state.

— https: // strace. io/

BUGS
A traced process runs slowly.

— strace(1)

https://strace.io/
http://man7.org/linux/man-pages/man1/strace.1.html#BUGS

What is strace?

strace is a diagnostic, debugging and instructional
userspace utility for Linux. It is used to monitor and
tamper with interactions between processes and the
Linux kernel, which include system calls, signal deliveries,
and changes of process state.

— https: // strace. io/

BUGS
A traced process runs slowly.

— strace(1)

https://strace.io/
http://man7.org/linux/man-pages/man1/strace.1.html#BUGS

Why is strace slow? [1/2]

ptrace(2)
strace utilizes ptrace infrastructure for tracing
ptrace(2) is a generic debugging interface that provides a
set of commands (requests) that enable various operations:
reading and writing tracee’s memory, obtaining tracee’s
registers, and so on
Almost all ptrace operations are performed on a stopped
process
The ptrace API (ab)uses the standard UNIX parent/child
signaling over waitpid(2) in order to deliver notifications
about changes in tracees’ state (including ptrace-induced
stops)
This mechanism is used to notify tracer about all kinds of
events: syscall stops (after resume with PTRACE_SYSCALL
request), signal deliveries, group stops, forks, execs, etc.

Why is strace slow? [1/2]

ptrace(2)
strace utilizes ptrace infrastructure for tracing
ptrace(2) is a generic debugging interface that provides a
set of commands (requests) that enable various operations:
reading and writing tracee’s memory, obtaining tracee’s
registers, and so on
Almost all ptrace operations are performed on a stopped
process
The ptrace API (ab)uses the standard UNIX parent/child
signaling over waitpid(2) in order to deliver notifications
about changes in tracees’ state (including ptrace-induced
stops)
This mechanism is used to notify tracer about all kinds of
events: syscall stops (after resume with PTRACE_SYSCALL
request), signal deliveries, group stops, forks, execs, etc.

Why is strace slow? [2/2]

How strace traces processes
strace is waiting for events in wait4(2)
Upon receiving a ptrace event, strace tries to figure out
what happened (syscall stop, signal received by tracee, etc.)

The only information it has at this point is the status returned
by the wait4(2) syscall; as a result, additional
PTRACE_GETEVENTMSG request is required to distinguish some
of the events

For syscall stops, the additional information (syscall number
and arguments on entering, return code on exiting) is retrieved
Syscall-specific decoder function is called, which, in turn, may
perform additional reads from tracee’s memory for elaborate
argument printing (structures, arrays, linked lists...)
When the decoding is finished, tracee is resumed
For each syscall, syscall stop is happened twice: on syscall
entering and exiting

Syscall argument retrieval

How syscall arguments are obtained
ptrace provides only basic requests for reading registers1

Different architectures provide different means for it:
PTRACE_PEEKUSER
PTRACE_GETREGS
PTRACE_GETREGSET NT_PRSTATUS

Use PTRACE_GETREGSET whenever possible
commit eec8d5d6b028665a73169fda96e4e873cb8351f0
Author: Denys Vlasenko <vda.linux@googlemail.com>
Date: Thu Feb 14 03:29:48 2013 +0100

[X86] Use ptrace(PTRACE_GETREGSET, NT_PRSTATUS) to get registers.

Unlike PTRACE_GETREGS, this new method detects 32-bit processes
reliably, without checking segment register values which
are undocumented and aren’t part of any sort of API.
While at it, also fixed x32 detection to use __X32_SYSCALL_BIT,
as it should have been from the beginning.

1Unless PTRACE_GET_SYSCALL_INFO request is available

Syscall argument retrieval

How syscall arguments are obtained
ptrace provides only basic requests for reading registers1

Different architectures provide different means for it:
PTRACE_PEEKUSER
PTRACE_GETREGS
PTRACE_GETREGSET NT_PRSTATUS

Use PTRACE_GETREGSET whenever possible
commit eec8d5d6b028665a73169fda96e4e873cb8351f0
Author: Denys Vlasenko <vda.linux@googlemail.com>
Date: Thu Feb 14 03:29:48 2013 +0100

[X86] Use ptrace(PTRACE_GETREGSET, NT_PRSTATUS) to get registers.

Unlike PTRACE_GETREGS, this new method detects 32-bit processes
reliably, without checking segment register values which
are undocumented and aren’t part of any sort of API.
While at it, also fixed x32 detection to use __X32_SYSCALL_BIT,
as it should have been from the beginning.

1Unless PTRACE_GET_SYSCALL_INFO request is available

Syscall argument retrieval

Without PTRACE_GETREGSET
ptrace(PTRACE_PEEKUSER, 7486, 8*ORIG_RAX, [0x2]) = 0
ptrace(PTRACE_PEEKUSER, 7486, 8*CS, [0x33]) = 0
ptrace(PTRACE_PEEKUSER, 7486, 8*RAX, [0xffffffffffffffda]) = 0
ptrace(PTRACE_PEEKUSER, 7486, 8*RDI, [0x7f8cb6d24640]) = 0
ptrace(PTRACE_PEEKUSER, 7486, 8*RSI, [0x80000]) = 0
ptrace(PTRACE_PEEKUSER, 7486, 8*RDX, [0x7f8cb6d27150]) = 0

With PTRACE_GETREGSET
ptrace(PTRACE_GETREGSET, 7510, 0x1, 0x6f0440) = 0

Syscall argument retrieval

Do not read syscall number on exiting
commit 77a7459536f38dd35364c24719ce5ca5cd6b76bc
Author: Denys Vlasenko <dvlasenk@redhat.com>
Date: Wed Aug 24 16:56:03 2011 +0200

Do not read syscall no in get_scno_on_sysexit

Do not call ptrace for filtered syscalls on exiting
commit 7df7bc1889ca2d75341ff4e4f7ee5e5903bf7b88
Author: Dmitry V. Levin <ldv@altlinux.org>
Date: Tue Apr 11 04:04:37 2017 +0000

trace_syscall_exiting: do not call get_regs for filtered syscalls

This saves up to 25% of ptrace syscalls in case of trace filtering.

Syscall argument retrieval

Avoid unnecessary ptrace calls
commit ce7d953ebecc10f71e191b6d18cfeb2399429d5f
Author: Denys Vlasenko <vda.linux@googlemail.com>
Date: Tue Feb 5 16:36:13 2013 +0100

Optimize out PTRACE_PEEKUSER with -i

strace -i was fetching PC with a separate PEEKUSER
despite having GETREGS data:

ptrace(PTRACE_GETREGS, 22331, 0, 0x8087f00) = 0
ptrace(PTRACE_PEEKUSER, 22331, 4*EIP, [0x80dd7b7]) = 0
write(3, "[080dd7b7] ioctl(0, SNDCTL_TMR_T"..., 82) = 82
ptrace(PTRACE_SYSCALL, 22331, 0, SIG_0) = 0

Now it does this:

ptrace(PTRACE_GETREGS, 22549, 0, 0x8087ea0) = 0
write(3, "[080dd7b7] ioctl(0, SNDCTL_TMR_T"..., 82) = 82
ptrace(PTRACE_SYSCALL, 22549, 0, SIG_0) = 0

Analogous improvement in sys_sigreturn() is also implemented.

Syscall data retrieval

Use process_vm_readv(2)
commit 3af224c5cd8a64a6af3f875549ff821e2b5cb211
Author: Denys Vlasenko <vda.linux@googlemail.com>
Date: Sat Jan 28 01:46:33 2012 +0100

Use process_vm_readv instead of PTRACE_PEEKDATA to read data blocks

Currently, we use PTRACE_PEEKDATA to read things like filenames and
data passed by I/O syscalls.
PTRACE_PEEKDATA gets one word per syscall. This is VERY expensive.
For example, in order to print fstat syscall, we need to perform
more than twenty trips into kernel to fetch one struct stat!

Kernel 3.2 got a new syscall, process_vm_readv(), which can be used
to copy data blocks out of process’ address space.

This change uses it in umoven() and umovestr() functions if possible,
with fallback to old method if process_vm_readv() fails.
If it returns ENOSYS, we don’t try to use it anymore, eliminating
overhead of trying it on older kernels.

Result of "time strace -oLOG ls -l /usr/lib >/dev/null":
before patch: 0.372s
After patch: 0.262s

Syscall data retrieval

Cache retrieved data
commit e99ac2bd2b055c7804d22e3519d7ba23c8f34df8
Author: Dmitry V. Levin <ldv@altlinux.org>
Date: Sun Sep 15 15:47:01 2019 +0000

Implement memory caching for umove* functions

When the data to be fetched by vm_read_mem resides in a single memory
page, fetch the whole page and cache it. This implementation caches
up to two memory pages.

General optimisations

Tracee descriptor search
commit e8cb814cf23dad36319205447eddb857a98889a2
Author: Dmitry V. Levin <ldv@altlinux.org>
Date: Tue Mar 1 14:42:58 2016 +0000

Optimize pid2tcb

Introduce an internal cache of pid2tcb translations.
This can save more than 80% of CPU user time spent by strace.

[...]

old$./set_ptracer_any ./pid2tcb >pid2tcb.wait & \
while [! -s pid2tcb.wait]; do sleep 0.1; done; \
time -f ’%Uuser %Ssystem %eelapsed %PCPU’ \
../strace -qq -enone -esignal=none -f -p $!

5.51user 104.90system 122.45elapsed 90%CPU

new$./set_ptracer_any ./pid2tcb >pid2tcb.wait & \
while [! -s pid2tcb.wait]; do sleep 0.1; done; \
time -f ’%Uuser %Ssystem %eelapsed %PCPU’ \
../strace -qq -enone -esignal=none -f -p $!

1.29user 102.78system 114.97elapsed 90%CPU

Tracee processing fairness fix [1/4]

The initial upstreaming attempt
In the end of the year 2008, a bug titled "Some threads stop
when strace with -f option is executed on a multi-thread
process" was reported via Red Hat Bugzilla

A series of patches was committed to the strace CVS
repository1234 in the beginning of 2009 as a fix
However, due to apparent disagreements with the
maintainer567, the patches have been reverted later that year8

As a result, the fix has become RHEL-only

1https://gitlab.com/strace/strace/commit/215cc270
2https://gitlab.com/strace/strace/commit/f9a7e63a
3https://gitlab.com/strace/strace/commit/2c8a2583
4https://gitlab.com/strace/strace/commit/47ce6dfc
5https://lists.strace.io/pipermail/strace-devel/2009-February/000909.html
6https://lists.strace.io/pipermail/strace-devel/2009-May/001038.html
7https://lists.strace.io/pipermail/strace-devel/2009-June/001054.html
8https://gitlab.com/strace/strace/commit/eb9e2e89

https://gitlab.com/strace/strace/commit/215cc270
https://gitlab.com/strace/strace/commit/f9a7e63a
https://gitlab.com/strace/strace/commit/2c8a2583
https://gitlab.com/strace/strace/commit/47ce6dfc
https://lists.strace.io/pipermail/strace-devel/2009-February/000909.html
https://lists.strace.io/pipermail/strace-devel/2009-May/001038.html
https://lists.strace.io/pipermail/strace-devel/2009-June/001054.html
https://gitlab.com/strace/strace/commit/eb9e2e89

Tracee processing fairness fix: reproducer

static int thd_no ;

static void * sub_thd (void *c)
{

for (;;)
getuid ();

return NULL;
}

int main(int argc , char ** argv)
{

int i;
pthread_t *thd;
int num_threads = 10;

thd = malloc (num_threads * sizeof (thd [0]));
for (i = 0; i < num_threads ; i++)

pthread_create (& thd[i], NULL , sub_thd , NULL);

return 0;
}

Tracee processing fairness fix: performance

tests/looping_threads.test (rewritten
test/many_looping_threads), before the patch
2 threads, 0.00 user, 0.00 system, 0:00.00 elapsed, 80% CPU
3 threads, 0.31 user, 2.36 system, 0:01.58 elapsed, 169% CPU
4 threads, 0.08 user, 0.49 system, 0:00.38 elapsed, 152% CPU
5 threads, 4.74 user, 40.52 system, 0:25.23 elapsed, 179% CPU
6 threads, 19.27 user, 156.55 system, 1:41.25 elapsed, 173% CPU

tests/looping_threads.test, after the patch
2 threads, 0.00 user, 0.00 system, 0:00.00 elapsed, 80% CPU
34 threads, 0.00 user, 0.03 system, 0:00.02 elapsed, 173% CPU
66 threads, 0.01 user, 0.11 system, 0:00.06 elapsed, 180% CPU
[...]
418 threads, 0.43 user, 7.64 system, 0:06.11 elapsed, 132% CPU
450 threads, 0.47 user, 8.64 system, 0:06.83 elapsed, 133% CPU
482 threads, 0.55 user, 10.15 system, 0:08.04 elapsed, 133% CPU
514 threads, 0.63 user, 12.08 system, 0:09.63 elapsed, 132% CPU
546 threads, 0.72 user, 14.33 system, 0:11.57 elapsed, 130% CPU
578 threads, 0.80 user, 16.44 system, 0:13.25 elapsed, 130% CPU
610 threads, 0.92 user, 20.09 system, 0:16.51 elapsed, 127% CPU

IBM POWER 9 02CY089, 8 cores, 32 threads

Tracee processing fairness fix [1/4]

The initial upstreaming attempt
In the end of the year 2008, a bug titled "Some threads stop
when strace with -f option is executed on a multi-thread
process" was reported via Red Hat Bugzilla
A series of patches was committed to the strace CVS
repository1234 in the beginning of 2009 as a fix
However, due to apparent disagreements with the
maintainer567, the patches have been reverted later that year8

As a result, the fix has become RHEL-only

1https://gitlab.com/strace/strace/commit/215cc270
2https://gitlab.com/strace/strace/commit/f9a7e63a
3https://gitlab.com/strace/strace/commit/2c8a2583
4https://gitlab.com/strace/strace/commit/47ce6dfc
5https://lists.strace.io/pipermail/strace-devel/2009-February/000909.html
6https://lists.strace.io/pipermail/strace-devel/2009-May/001038.html
7https://lists.strace.io/pipermail/strace-devel/2009-June/001054.html
8https://gitlab.com/strace/strace/commit/eb9e2e89

https://gitlab.com/strace/strace/commit/215cc270
https://gitlab.com/strace/strace/commit/f9a7e63a
https://gitlab.com/strace/strace/commit/2c8a2583
https://gitlab.com/strace/strace/commit/47ce6dfc
https://lists.strace.io/pipermail/strace-devel/2009-February/000909.html
https://lists.strace.io/pipermail/strace-devel/2009-May/001038.html
https://lists.strace.io/pipermail/strace-devel/2009-June/001054.html
https://gitlab.com/strace/strace/commit/eb9e2e89

Tracee processing fairness fix [2/4]

The following tumbling
The issue has been discussed again in 20121, but no decision
has been made
Meanwhile, the fix has been forward-ported to RHEL 6 in
2009 (on top of 4.5.19) and then RHEL 7 (on top of 4.8 in
2012, on top of 4.10 in 2015, on top of 4.12 in 2016, and on
top of 4.17 in 2017)
When the need has arisen to forward-port the patch for strace
4.24 in 2018, yet another attempt to upstream the patch has
been made
The effort took more than half a year, but the patch has finally
been included in strace 5.0, released on March 19th, 2019.

1https://lists.strace.io/pipermail/strace-devel/2012-May/002306.html

https://lists.strace.io/pipermail/strace-devel/2012-May/002306.html

Tracee processing fairness fix [3/4]

The final upstreamed commit
commit e0f0071b36215de8a592bf41ec007a794b550d45
Author: Eugene Syromyatnikov <evgsyr@gmail.com>
AuthorDate: Wed Aug 8 21:41:39 2018 +0200
Commit: Dmitry V. Levin <ldv@altlinux.org>
CommitDate: Wed Mar 6 23:20:39 2019 +0000

Implement queueing of threads before dispatching them

[...]

Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=478419
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=526740
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=851457
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1609318
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1610774
Co-Authored-by: Dmitry V. Levin <ldv@altlinux.org>
Co-Authored-by: Denys Vlasenko <dvlasenk@redhat.com>
Co-Authored-by: Andreas Schwab <aschwab@redhat.com>
Co-Authored-by: Jeff Law <law@redhat.com>
Co-Authored-by: DJ Delorie <dj@redhat.com>

3 files changed, 283 insertions(+), 125 deletions(-)

Tracee processing fairness fix [4/4]

The missing contributors
Jan Stancek <jstancek@redhat.com>

. . . someone else?

Tracee processing fairness fix: performance

tests/looping_threads.test (rewritten
test/many_looping_threads), before the patch
2 threads, 0.00 user, 0.00 system, 0:00.00 elapsed, 80% CPU
3 threads, 0.31 user, 2.36 system, 0:01.58 elapsed, 169% CPU
4 threads, 0.08 user, 0.49 system, 0:00.38 elapsed, 152% CPU
5 threads, 4.74 user, 40.52 system, 0:25.23 elapsed, 179% CPU
6 threads, 19.27 user, 156.55 system, 1:41.25 elapsed, 173% CPU

tests/looping_threads.test, after the patch
2 threads, 0.00 user, 0.00 system, 0:00.00 elapsed, 80% CPU
34 threads, 0.00 user, 0.03 system, 0:00.02 elapsed, 173% CPU
66 threads, 0.01 user, 0.11 system, 0:00.06 elapsed, 180% CPU
[...]
418 threads, 0.43 user, 7.64 system, 0:06.11 elapsed, 132% CPU
450 threads, 0.47 user, 8.64 system, 0:06.83 elapsed, 133% CPU
482 threads, 0.55 user, 10.15 system, 0:08.04 elapsed, 133% CPU
514 threads, 0.63 user, 12.08 system, 0:09.63 elapsed, 132% CPU
546 threads, 0.72 user, 14.33 system, 0:11.57 elapsed, 130% CPU
578 threads, 0.80 user, 16.44 system, 0:13.25 elapsed, 130% CPU
610 threads, 0.92 user, 20.09 system, 0:16.51 elapsed, 127% CPU

IBM POWER 9 02CY089, 8 cores, 32 threads

dd slowdown

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.128348 s, 4.0 MB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 17.5274 s, 29.2 kB/s

Intel Sandy Bridge-EP (i7-3960X)
≈ 136.5x slowdown

But we still have to stop a tracee on each syscall.

Some less artificial example1

Re-building of strace itself
Non-traced run : 39.849 s

Under strace 4.6 : 121.840 s (3.06x slowdown)
Under strace 5.4 : 110.255 s (2.77x slowdown)

1https://fosdem.org/2018/schedule/event/debugging_tools_stracing_build/

https://fosdem.org/2018/schedule/event/debugging_tools_stracing_build/

dd slowdown

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.128348 s, 4.0 MB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 17.5274 s, 29.2 kB/s

Intel Sandy Bridge-EP (i7-3960X)
≈ 136.5x slowdown

But we still have to stop a tracee on each syscall.

Microarchitectural side-channel attack mitigations

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.540779 s, 947 kB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 20.2093 s, 25.3 kB/s

Intel Sandy Bridge-EP (i7-3960X) with patched kernel and microcode (up to MDS)
≈ 37.37x slowdown

But we still have to stop a tracee on each syscall.

dd slowdown: mips

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 1.75059 s, 292 kB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 66.6589 s, 7.7 kB/s

Cavium Octeon CN5020
≈ 38.07x slowdown

But we still have to stop a tracee on each syscall.

dd slowdown: armv7

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.732232 s, 699 kB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 42.3294 s, 12.1 kB/s

Broadcom BCM2835
≈ 57.8x slowdown

But we still have to stop a tracee on each syscall.

dd slowdown: ppc64le

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.480209 s, 1.1 MB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 18.0921 s, 28.3 kB/s

IBM POWER 9 02CY089
≈ 37.67x slowdown

But we still have to stop a tracee on each syscall.

dd slowdown: s390x

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.221291 s, 2.3 MB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 6.58973 s, 77.7 kB/s

IBM System z12, 2-core LPAR
≈ 29.77x slowdown

But we still have to stop a tracee on each syscall.

Microarchitectural side-channel attack mitigations

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.540779 s, 947 kB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 20.2093 s, 25.3 kB/s

Intel Sandy Bridge-EP (i7-3960X) with patched kernel and microcode (up to MDS)
≈ 37.37x slowdown

But we still have to stop a tracee on each syscall.

Microarchitectural side-channel attack mitigations

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 0.540779 s, 947 kB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000+0 records in
512000+0 records out
512000 bytes (512 kB) copied, 20.2093 s, 25.3 kB/s

Intel Sandy Bridge-EP (i7-3960X) with patched kernel and microcode (up to MDS)
≈ 37.37x slowdown
But we still have to stop a tracee on each syscall.

seccomp-assisted system call filtering [1/2]

Ah, no, we haven’t.

seccomp-bpf usage
seccomp (for Secure Computing) is a Linux mechanism that
provides an ability (in its SECCOMP_SET_MODE_FILTER mode)
to attach a BPF program to a process
Since Linux 3.5, a seccomp program has an ability to return
SECCOMP_RET_TRACE as a result of its execution, which, in
turn, notifies ptrace-based tracer with
PTRACE_EVENT_SECCOMP

When --seccomp-bpf command-line option is passed to
strace, BPF bytecode is generated and attached to tracees,
if possible
The feature has been implemented as part of GSoC 2018 and
2019 projects by Chen Jingpiao and Paul Chaignon, and
included in the 5.3 release of strace

seccomp-assisted system call filtering [2/2]

dd if=/dev/zero of=/dev/null bs=1 count=500k
512000 bytes (512 kB) copied, 0.540779 s, 947 kB/s

strace -eaccept dd if=/dev/zero of=/dev/null bs=1
count=500k
512000 bytes (512 kB) copied, 20.2093 s, 25.3 kB/s

strace --seccomp-bpf -eaccept dd if=/dev/zero of=/dev/null
bs=1 count=500k
512000 bytes (512 kB) copied, 0.79769 s, 642 kB/s

≈ 37.37x slowdown before, ≈ 1.475x after, ≈ 25.33x improvement

Some less artificial example1

Re-building of strace itself
Non-traced run : 39.849 s

Under strace 4.6 : 121.840 s (3.06x slowdown)
Under strace 5.4 : 110.255 s (2.77x slowdown)

Under strace 5.4 with seccomp-bpf : 57.520 s (1.44x slowdown)

1https://fosdem.org/2018/schedule/event/debugging_tools_stracing_build/

https://fosdem.org/2018/schedule/event/debugging_tools_stracing_build/

Future plans

Near future
Enable seccomp-bpf by default
Refine tracee’s memory caching strategy

Distant future
strace’s seccomp-bpf filter would benefit greatly from eBPF
maps, once they are made available for seccomp eBPF
programs
Moving away from ptrace tracing backend is a possibility,
once some other tracing backend (perf?) would allow
stopping tracee instead of dropping events12

1See https://linuxplumbersconf.org/event/2/contributions/78/, "Problem
8: strace is slow, perf can lose data"

2https://lore.kernel.org/lkml/20181128134700.212ed035@gandalf.local.home/

https://linuxplumbersconf.org/event/2/contributions/78/
https://linuxplumbersconf.org/event/2/contributions/78/attachments/63/74/lpc_2018-what_could_be_done_in_the_kernel_to_make_strace_happy.pdf#page=20
https://linuxplumbersconf.org/event/2/contributions/78/attachments/63/74/lpc_2018-what_could_be_done_in_the_kernel_to_make_strace_happy.pdf#page=20
https://lore.kernel.org/lkml/20181128134700.212ed035@gandalf.local.home/

Questions?

homepage
https://strace.io/

strace.git
https://gitlab.com/strace/strace.git
https://github.com/strace/strace.git

mailing list
strace-devel@lists.strace.io

IRC channel
#strace@freenode

https://strace.io/
https://gitlab.com/strace/strace.git
https://github.com/strace/strace.git

