
Securing ProtonMail:

Building a Web App that
Doesn’t Trust the Server

Daniel Huigens

What do we want to achieve?

2

• Allow you to trust that we can’t

read your email

• Without trusting the server

How does our web app work?

3

Normal web app Our web app

Trust source code
coming from the server ?

Send password to the
server

Use Secure Remote
Password protocol

Trust data
coming from the server ?

Send data to the server
unencrypted

Send data to the server
signed and encrypted
using OpenPGP

4

The JavaScript trust problem (I)

• HTML, CSS and JavaScript are

sent to the browser each time

• The browser does what the server

says

• Server says: send me the password

5

The JavaScript trust problem (II)

• Could be hacked or rogue:

• Employee

• Hosting

• Content Delivery Network (if used)

• National Security Agencies

• Corporate Network

6

7

“the funds were intercepted when the user made a payment ”

“how did this happen? ”

8

Source Code Transparency

• Hash the code at the source

• Publish it somewhere

• Verify that everyone gets the same code

9

Certificate Transparency

• Append-only log server

• Gives you Signed Certificate Timestamp

• Promises to publish the Certificate in the

Log

10

Service Workers

• Sit “between web app and server”

• Can read and block responses

• Can even detect updates to the Service Worker itself

11

All together now

• Certificate goes in the Log Server

• Able to verify that there's only one

certificate

• Hash goes in the certificate

• ⇒ Everyone sees the same code

Log Server

How will our web app work?

12

Normal web app Our web app

Trust source code
coming from the server

Verify source code
coming from the server

Send password to the
server

Use Secure Remote
Password protocol

Trust data
coming from the server ?

Send data to the server
unencrypted

Send data to the server
signed and encrypted
using OpenPGP

Key distribution solutions

13

• In-person exchange / verification

• Key Signing parties

• Web of Trust

Key Transparency

14

• Publish all keys

• Make sure that everyone sees the same keys

• Everyone checks their own key

• ⇒ All keys can be trusted

Merkle tree

15

Root Node
Hash(Node 0 + Node 1)

Node 0
Hash(0-0 + 0-1)

Node 1
Hash(1-0 + 1-1)

256 steps

Node 0-0-…-0
Hash(Empty Node)

Node 0-0-…-1
Hash(Fingerprint)

Node 1-1-…-0
Hash(Empty Node)

Node 1-1-…-1
Hash(Fingerprint)

[0-0-…-1, proof] == VerifiableRandomFunction(EmailAddress)
…

 …

…

How will our web app work?

16

Normal web app Our web app

Trust source code
coming from the server

Verify source code
coming from the server

Send password to the
server

Use Secure Remote
Password protocol

Trust data
coming from the server

Verify data
coming from the server

Send data to the server
unencrypted

Send data to the server
signed and encrypted
using OpenPGP

protonmail.com

Thanks! Questions?

Daniel Huigens
Cryptography Engineer

d.huigens@protonmail.com
PGP Key ID: F7D8FA8EC9D526EC

reddit.com/r/ProtonMailnews.ycombinator.com/user?id=protonmail

Contact Us!

https://protonmail.com/
https://www.linkedin.com/company-beta/5241679/
https://www.reddit.com/r/ProtonMail/

