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Why do we need another framework?



New System Component for Trusted Execution

Software Guard eXtensions (SGX)

enclaves enable trusted execution in ———— _AIPP _____ .
i . ! ! 1

untrusted environment: i Enc. 1 - Enc. 2 |
= Protect cold-boot [1], platform I N !

reset [2] and DMA attacks [3]

= Remove an OS and a hypervisor

Kernel
from the Trusted Computing
Base (TCB)
= Special features: remote/local Hypervisor

attestation, data sealing




Intel SGX Software Development Kit

Programming approach:

= Invocation of functions
Advantages:

= Low TCB

= |ntuitive use '

Untrusted ¢




Intel SGX Software Development Kit

Programming approach:

= |nvocation of functions

Untrusted Enclave
'

Advantages:
= Low TCB

= |ntuitive use

call foo()

Disadvantages:
= Inflexible partitioning bar() 4

= High transition costs

= ECALL, OCALL: ~50x
= sgx_mutex: ~200Xx




Existing Approaches::LibOS/Shim

Programming approach:

= Enclave the whole application

Frameworks:

= Haven [4], SCONE [5], |
Graphene-SGX [6], Panoply [7] |
Advantages: i

Application

Library OS/shim
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= Legacy

= Fast transitions (some) Untrusted ¢




Existing Approaches::LibOS/Shim

Programming approach:

= Enclave the whole application

Frameworks:

= Haven [4], SCONE [5], |
Graphene-SGX [6], Panoply [7] |
Advantages: i

Application

Library OS/shim

,,,,,,, S

= Legacy

= Fast transitions (some) Untrusted ¢

Disadvantage:

= Monolithic design — Large TCB



Towards Multi-enclave Applications

A single process can host e e i
multiple enclaves Enclave #1 -<=> Enclave #2

— Mutually distrusted partitions /- -\»
Examples:

= Instant message service
. - C1 mmmmmm e . pmmmmmm e :
= Secure-multiparty computation 1] ' ' i ]

Programming model should offer: : b '

SRR - ..---__'\,
= Fast enclave-to-enclave \ /

communication

= Minimal per-enclave TCB

= Flexible partitioning
Secure multi-party computation



Towards Actors-Based Trusted Computing

Actors:

= Non-blocking

= Use messages A#5
— Shared-nothing (no locks!)

— Lightweight (flexible!)

A#1
A#2

A#3 A#4 /




Towards Actors-Based Trusted Computing

Actors:

= Non-blocking

= Use messages A#5
— Shared-nothing (no locks!)

— Lightweight (flexible!)

A#1
Existing frameworks: A#2

= Heavy runtime (Erlang, Java) / j

= Do not tailored for enclaves
(CAF) A#3 A#4

— Need another framework




The framework
Fundamentals
Messaging
System Components
Benchmark

Examples



EActors: Actors-based Trusted Computing

/// \‘
/ A#5 |/
= What is an Actor? / y .
/ 7 - A
= How actors communicate? [ B R ]
. L | a#2 |/
= System support - 4 4
T
A#3 S oasa
1 4
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Components:

T# 49510/ TH# 1210/ £# 1910/

eactors

Enclaves
Workers

= .actors to enclaves
= _actors to workers
workers to CPUs

Bindings:



Programming with .actors

An .actor:
= Constructor
= Body function
= Private state
Building:
= .actor's source

= Deployment
XML

= Framework
Output:

= Enclave's
binaries

= Untrusted
binaries

© ® N O G A Ww N e

10

12
13
14
15
16
17
18
19

struct state {struct channel chan[2];int first;}

void aping(struct actorx self) {
if (self >state—>first) {
self —>state—>first = 0;
} else {
"7l /* receive a pong */
charx msg = recv(&self—>channel [0]);
if (msg = NULL)
return;
}
/* send a ping */
send(&self—=>channel [1], "ping");

}

void aping_ctr(struct actor* self) {
self —>state—>first = 1;
connect(self—>channel [0]);

}
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Nodes — a Basis for Messaging

The node is a memory object:
= Header, Payload
= Allocated at startup

= Private or public

Payload

Header
NULL
*next
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Nodes — a Basis for Messaging

The node is a memory object:
= Header, Payload
= Allocated at startup

= Private or public

\

P
= Double-linked queues 2ldly .
8|5 y ayload
API: *top T|Z|*
L. X 3
= pool: LIFO for empty *bottom RET
nodes lock ¥4
| > | =
= mbox: FIFO for message HRAE Payload
T(* |2
exchange

= push_to/pop_from
tail /front
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Message-based Communication

Send/receive: : Enclave 31,
. [PING| 1 [pOOL
*/

__________
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Message-based Communication

Send/receive:

1. PING: Dequeue a node i )

2. PING: Write (enc.) data o

12



Message-based Communication

Send/receive: Enclave #1!

1. PING: Dequeue a node E PING| | POOL

2. PING: Write (enc.) data o0

ws) [}

3. PING: Enqueue to a mbox
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Message-based Communication

Send /receive:

1. PING: Dequeue a node i__ N

2. PING: Write (enc.) data o

3. PING: Enqueue to a mbox Y

4. PONG: Dequeue from "" %$ 7
mbox

5. PONG: Read (dec.) data

[povg]
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Message-based Communication

Send /receive:

1. PING: Dequeue a node i__ N

2. PING: Write (enc.) data o

3. PING: Enqueue to a mbox Y

4. PONG: Dequeue from %$ 7
mbox

&

PONG: Read (dec.) data
6. PONG: Return the node

[povg]
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Message-based Communication

Send /receive:

1.

2

PING: Dequeue a node

2. PING: Write (enc.) data
3.
4

. PONG: Dequeue from

PING: Enqueue to a mbox

mbox
PONG: Read (dec.) data
PONG: Return the node

- =

poNG|
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Message-based Communication

Send/receive:

1.

o

PING: Dequeue a node

2. PING: Write (enc.) data
3.
4

. PONG: Dequeue from

PING: Enqueue to a mbox

mbox
PONG: Read (dec.) data
PONG: Return the node

_______

- =

= =
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Connectors and Ca

Nodes and queues are low-level communication primitives
+ Multi-Producer Multi-Consumer

— Plain text
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Connectors and Ca

Nodes and queues are low-level communication primitives
+ Multi-Producer Multi-Consumer

— Plain text

Cargos and Connectors are high-level communication primitives
= Unified interfaces for encrypted and non-encrypted messages
= Based on nodes and queues
= P2P message exchange

= Uses local-attestation for the key-exchange procedure
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System Components::System Actors and EOS

System actors:
= .actor cannot use syscalls
= Multiple system .actors

= Message based interaction

[OPENER | |READER/WRITER| |CLOSER|

| TCP/IP stack |
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System Components::System Actors and EOS

System actors:
= .actor cannot use syscalls
= Multiple system .actors

= Message based interaction

Enclave #1

[OPENER | |READER/WRITER| |CLOSER|

| TCP/IP stack

Eactors Object Store:

0x7ffb00000000

Key-value store
Can be private or public

Can be encrypted or
non-encrypted

Persistence on demand

vy
2
Slale
ol2)| < - o
=1zl 8zl 8]8]E = |d|o
glefg|®@ al|?|s >
S13] e X =
a|ln]|
(&)
A A

+size
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Ping-pong

Ping-pong: --------- 0* -------- +0

= 1,000,000 K rie . $

messages ; Pone E

« 16-512KiB e S —— | S |3 S

SDK:

= 2 threads,
ECALLs

EActors: oo g

: ; [mB#1] :

= 2 Actors, cargos g PING —= PONG g

..........................................
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Ping-pong

-o- SDK EActors Encrypted

T T T
SDK: 319 (1783 - 10,000 i
peak) @
- 32KiB - L1 =
cache 3 5,000 |
-~
Sy
e
N ]
§D 9 =0------ Qocvvcoonoon o
16 64K128K 256K 512K

Message size (Bytes)
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Ping-pong

-o- SDK EActors Encrypted

[ T T T J
SDK: 319 (1783 o 10000
peak) @
- 32KiB - L1 =
cache 3 5,000 |
=
EActors: 9706 %0
!
P
S LA
Ojo Q--0------ OIS eI 0
16 64K128K 256K 512K

Message size (Bytes)
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Ping-pong

-o- SDK EActors - ¢- Encrypted
10,000 o ‘ i)

L==

SDK: 319 (1783
peak)
= 32KiB - L1
cache
EActors: 9706
Encrypted: 974

1 30x

Throughput (MiB/s)
o1
f=)
(e)
S
T
|

-————-———— P-—-—-=—=—=—=—=—====
LS OElafatalatlalla ol P
16 64K128K 256K 512K

Message size (Bytes)
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Some Examples and Demos

Sources:
https://github.com/ibr-ds/EActors/tree/master/examples

template Simple hello-world actor
pingpong non-encrypted messages
pingpong?2 cargo-based messaging
pingpongLA Local attestation
smc Secure multi-party computation
eos EActors object store

http A simple web server with SSL
https://primate.ibr.cs.tu-bs.de

17


https://github.com/ibr-ds/EActors/tree/master/examples
https://primate.ibr.cs.tu-bs.de

Future plans

18



EActors:: What is next?

= Hardening — Isolation for actors

= Auto partitioning

= Multi-enclave Applications

= Independent from Intel SGX SDK

19



Conclusion

20



= EActors — an actor-based programming framework
= C, uses the Intel SGX SDK

= Targets multi-enclave use cases

= Provides system components

= High-performance communication primitives

Sources: https://github.com/ibr-ds/EActors

Thank you!

21


https://github.com/ibr-ds/EActors
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