EActors: an actor-based programming
framework for Intel SGX

Dr.-Eng. V. A. Sartakov
01.02.2x20

Imperial College London

Why do we need another framework?

New System Component for Trusted Execution

Software Guard eXtensions (SGX)

enclaves enable trusted execution in ———— _AIPP _____ .
i . ! ! 1

untrusted environment: i Enc. 1 - Enc. 2 |
= Protect cold-boot [1], platform I N !

reset [2] and DMA attacks [3]

= Remove an OS and a hypervisor

Kernel
from the Trusted Computing
Base (TCB)
= Special features: remote/local Hypervisor

attestation, data sealing

Intel SGX Software Development Kit

Programming approach:

= Invocation of functions
Advantages:

= Low TCB

= |ntuitive use '

Untrusted ¢

Intel SGX Software Development Kit

Programming approach:

= |nvocation of functions

Untrusted Enclave
'

Advantages:
= Low TCB

= |ntuitive use

call foo()

Disadvantages:
= Inflexible partitioning bar() 4

= High transition costs

= ECALL, OCALL: ~50x
= sgx_mutex: ~200Xx

Existing Approaches::LibOS/Shim

Programming approach:

= Enclave the whole application

Frameworks:

= Haven [4], SCONE [5], |
Graphene-SGX [6], Panoply [7] |
Advantages: i

Application

Library OS/shim

,,,,,,, S

= Legacy

= Fast transitions (some) Untrusted ¢

Existing Approaches::LibOS/Shim

Programming approach:

= Enclave the whole application

Frameworks:

= Haven [4], SCONE [5], |
Graphene-SGX [6], Panoply [7] |
Advantages: i

Application

Library OS/shim

,,,,,,, S

= Legacy

= Fast transitions (some) Untrusted ¢

Disadvantage:

= Monolithic design — Large TCB

Towards Multi-enclave Applications

A single process can host e e i
multiple enclaves Enclave #1 -<=> Enclave #2

— Mutually distrusted partitions /- -\»
Examples:

= Instant message service
. - C1 mmmmmm e . pmmmmmm e :
= Secure-multiparty computation 1] ' ' i]

Programming model should offer: : b '

SRR - ..---__'\,
= Fast enclave-to-enclave \ /

communication

= Minimal per-enclave TCB

= Flexible partitioning
Secure multi-party computation

Towards Actors-Based Trusted Computing

Actors:

= Non-blocking

= Use messages A#5
— Shared-nothing (no locks!)

— Lightweight (flexible!)

A#1
A#2

A#3 A#4 /

Towards Actors-Based Trusted Computing

Actors:

= Non-blocking

= Use messages A#5
— Shared-nothing (no locks!)

— Lightweight (flexible!)

A#1
Existing frameworks: A#2

= Heavy runtime (Erlang, Java) / j

= Do not tailored for enclaves
(CAF) A#3 A#4

— Need another framework

The framework
Fundamentals
Messaging
System Components
Benchmark

Examples

EActors: Actors-based Trusted Computing

/// \‘
/ A#5 |/
= What is an Actor? / y .
/ 7 - A
= How actors communicate? [B R]
. L | a#2 |/
= System support - 4 4
T
A#3 S oasa
1 4

3
2
>
®

b

0

£

(3]
O

Components:

T# 49510/ TH# 1210/ £# 1910/

eactors

Enclaves
Workers

= .actors to enclaves
= _actors to workers
workers to CPUs

Bindings:

Programming with .actors

An .actor:
= Constructor
= Body function
= Private state
Building:
= .actor's source

= Deployment
XML

= Framework
Output:

= Enclave's
binaries

= Untrusted
binaries

© ® N O G A Ww N e

10

12
13
14
15
16
17
18
19

struct state {struct channel chan[2];int first;}

void aping(struct actorx self) {
if (self >state—>first) {
self —>state—>first = 0;
} else {
"7l /* receive a pong */
charx msg = recv(&self—>channel [0]);
if (msg = NULL)
return;
}
/* send a ping */
send(&self—=>channel [1], "ping");

}

void aping_ctr(struct actor* self) {
self —>state—>first = 1;
connect(self—>channel [0]);

}

10

Nodes — a Basis for Messaging

The node is a memory object:
= Header, Payload
= Allocated at startup

= Private or public

Payload

Header
NULL
*next

11

Nodes — a Basis for Messaging

The node is a memory object:
= Header, Payload
= Allocated at startup

= Private or public

\

P
= Double-linked queues 2ldly .
8|5 y ayload
API: *top T|Z|*
L. X 3
= pool: LIFO for empty *bottom RET
nodes lock ¥4
| > | =
= mbox: FIFO for message HRAE Payload
T(* |2
exchange

= push_to/pop_from
tail /front

11

Message-based Communication

Send/receive: : Enclave 31,
. [PING| 1 [pOOL
*/

12

Message-based Communication

Send/receive:

1. PING: Dequeue a node i)

2. PING: Write (enc.) data o

12

Message-based Communication

Send/receive: Enclave #1!

1. PING: Dequeue a node E PING| | POOL

2. PING: Write (enc.) data o0

ws) [}

3. PING: Enqueue to a mbox

12

Message-based Communication

Send /receive:

1. PING: Dequeue a node i__ N

2. PING: Write (enc.) data o

3. PING: Enqueue to a mbox Y

4. PONG: Dequeue from "" %$ 7
mbox

5. PONG: Read (dec.) data

[povg]

12

Message-based Communication

Send /receive:

1. PING: Dequeue a node i__ N

2. PING: Write (enc.) data o

3. PING: Enqueue to a mbox Y

4. PONG: Dequeue from %$ 7
mbox

&

PONG: Read (dec.) data
6. PONG: Return the node

[povg]

12

Message-based Communication

Send /receive:

1.

2

PING: Dequeue a node

2. PING: Write (enc.) data
3.
4

. PONG: Dequeue from

PING: Enqueue to a mbox

mbox
PONG: Read (dec.) data
PONG: Return the node

- =

poNG|

12

Message-based Communication

Send/receive:

1.

o

PING: Dequeue a node

2. PING: Write (enc.) data
3.
4

. PONG: Dequeue from

PING: Enqueue to a mbox

mbox
PONG: Read (dec.) data
PONG: Return the node

- =

= =

12

Connectors and Ca

Nodes and queues are low-level communication primitives
+ Multi-Producer Multi-Consumer

— Plain text

13

Connectors and Ca

Nodes and queues are low-level communication primitives
+ Multi-Producer Multi-Consumer

— Plain text

Cargos and Connectors are high-level communication primitives
= Unified interfaces for encrypted and non-encrypted messages
= Based on nodes and queues
= P2P message exchange

= Uses local-attestation for the key-exchange procedure

13

System Components::System Actors and EOS

System actors:
= .actor cannot use syscalls
= Multiple system .actors

= Message based interaction

[OPENER | |READER/WRITER| |CLOSER|

| TCP/IP stack |

14

System Components::System Actors and EOS

System actors:
= .actor cannot use syscalls
= Multiple system .actors

= Message based interaction

Enclave #1

[OPENER | |READER/WRITER| |CLOSER|

| TCP/IP stack

Eactors Object Store:

0x7ffb00000000

Key-value store
Can be private or public

Can be encrypted or
non-encrypted

Persistence on demand

vy
2
Slale
ol2)| < - o
=1zl 8zl 8]8]E = |d|o
glefg|®@ al|?|s >
S13] e X =
a|ln]|
(&)
A A

+size

14

Ping-pong

Ping-pong: --------- 0* -------- +0

= 1,000,000 K rie . $

messages ; Pone E

« 16-512KiB e S —— | S |3 S

SDK:

= 2 threads,
ECALLs

EActors: oo g

: ; [mB#1] :

= 2 Actors, cargos g PING —= PONG g

..

15

Ping-pong

-o- SDK EActors Encrypted

T T T
SDK: 319 (1783 - 10,000 i
peak) @
- 32KiB - L1 =
cache 3 5,000 |
-~
Sy
e
N]
§D 9 =0------ Qocvvcoonoon o
16 64K128K 256K 512K

Message size (Bytes)

16

Ping-pong

-o- SDK EActors Encrypted

[T T T J
SDK: 319 (1783 o 10000
peak) @
- 32KiB - L1 =
cache 3 5,000 |
=
EActors: 9706 %0
!
P
S LA
Ojo Q--0------ OIS eI 0
16 64K128K 256K 512K

Message size (Bytes)

16

Ping-pong

-o- SDK EActors - ¢- Encrypted
10,000 o ‘ i)

L==

SDK: 319 (1783
peak)
= 32KiB - L1
cache
EActors: 9706
Encrypted: 974

1 30x

Throughput (MiB/s)
o1
f=)
(e)
S
T
|

-————-———— P-—-—-=—=—=—=—=—====
LS OElafatalatlalla ol P
16 64K128K 256K 512K

Message size (Bytes)

16

Some Examples and Demos

Sources:
https://github.com/ibr-ds/EActors/tree/master/examples

template Simple hello-world actor
pingpong non-encrypted messages
pingpong?2 cargo-based messaging
pingpongLA Local attestation
smc Secure multi-party computation
eos EActors object store

http A simple web server with SSL
https://primate.ibr.cs.tu-bs.de

17

https://github.com/ibr-ds/EActors/tree/master/examples
https://primate.ibr.cs.tu-bs.de

Future plans

18

EActors:: What is next?

= Hardening — Isolation for actors

= Auto partitioning

= Multi-enclave Applications

= Independent from Intel SGX SDK

19

Conclusion

20

= EActors — an actor-based programming framework
= C, uses the Intel SGX SDK

= Targets multi-enclave use cases

= Provides system components

= High-performance communication primitives

Sources: https://github.com/ibr-ds/EActors

Thank you!

21

https://github.com/ibr-ds/EActors

References i

[3 J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest we remember: cold-boot attacks on encryption keys,"”
Communications of the ACM, vol. 52, no. 5, pp. 91-98, 2009.

@ A. Boileau, “Hit by a bus: Physical access attacks with firewire,”
Presentation, Ruxcon, vol. 3, 2006.

@ B. Bock and S. B. Austria, “Firewire-based physical security attacks
on windows 7, efs and bitlocker,” Secure Business Austria Research
Lab, 2009.

@ A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with haven,” ACM Transactions on Computer
Systems (TOCS), vol. 33, no. 3, p. 8, 2015.

References ii

@ S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O'Keeffe, M. Stillwell et al., “SCONE:
Secure Linux Containers with Intel SGX.” in OSDI, 2016, pp.
689-703.

@ C. Tsai, D. E. Porter, and M. Vij, "Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX," in 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 2017, pp. 645—658.

@ S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “PANOPLY:
Low-TCB Linux Applications With SGX Enclaves,” in Proc. of the
Annual Network and Distributed System Security Symp.(NDSS),
2017.

	Why do we need another framework?
	The framework
	Fundamentals
	Messaging
	System Components
	Benchmark
	Examples

	Future plans
	Conclusion
	Appendix

