Building Homebridge with the Yocto Project

Leon Anavi
Konsulko Group
leon.anavi@konsulko.com
leon@anavi.org
FOSDEM 2020
Agenda

- Homebridge
- Yocto Project and OpenEmbedded
- Building a distribution with Homebridge using Yocto/OE
- Exploring distribution features
- Ideas for improvements
- Conclusions
Why? The Story ...

- A friend, electrical engineer, asked me for help with a very expensive proprietary solution for smart home that didn’t support Apple HomeKit and Siri
- Setting up Raspbian, Homebridge and all dependencies is annoying and time consuming, especially for non-Linux users
- For a long time I wanted to make a custom Linux distro as a complementary hub for various servers to my open source home automation setup
- Although I have numerous years of professional experience with the Yocto Project, I was curious to see if it is useful for makers
Homebridge

- Lightweight server that emulates Apple iOS HomeKit API
- Written in Node.js
- Numerous plugins exist for integrating various devices
- Can be installed on macOS, MS Windows 10, GNU/Linux distributions and Docker
- Available at GitHub under Apache License 2.0: https://github.com/nfarina/homebridge
- https://homebridge.io/
Homebridge Community

- Started by Nick Farina in 2014
- Thousands of plugin developers
- Dozens of core contributors
- Based on the work of Alex Skalozub (@pieceofsummer) who reverse engineered HomeKit and Khaos Tian (@KhaosT) who built the HAP-NodeJS, implementation of the HomeKit Accessory Server
Homebridge Plugins

Homebridge plugin allow integration of various Internet of Things. Popular plugins are:

- Config-UI-X (web interface)
- Legrand (BTicino) MyHome
- Sonoff (for Sonoff Basic devices with Tasmota firmware)
- Alexa (exposes homebridge controlled devices to Amazon Alexa)
- IKEA Trådfri Gateway
- MQTT
- Many other plugins...
Let’s Build an Embedded Linux Distro! How?

- Yocto Project
- Buildroot
- PTXdist
- OpenWRT
- Other … including customizing a Debian derivative

Chris Simmonds at Embedded Linux Conference EU 2019: Debian or Yocto Project? Which is the Best for your Embedded Linux Project?
What to Include in Our Distro?

- BSP for optimal performance (64-bit where possible): bootloader, Linux kernel and device drivers
- Init system: Systemd
- Connectivity and interfacing options: WiFi, SSH, VNC, serial
- Node.js and NPM
- Homebridge with plugins
- Mosquitto MQTT broker
- X11 windowing system with openbox, pcmanfm, xterm, gedit, network manager, surf (minimalist web browser)
- Support low-cost mini OLED display for showing system status
Yocto Project & OpenEmbedded

- Open source collaborative project of the Linux foundation for creating custom Linux-based systems for embedded device using the OpenEmbedded Build System
- OpenEmbedded Build System includes BitBake and OpenEmbedded Core
- Poky is a reference distribution of the Yocto Project provided as metadata, without binary files, to bootstrap your own distribution for Internet of Things and embedded devices
- Bi-annual release cycle
Yocto Project Releases

<table>
<thead>
<tr>
<th>Codename</th>
<th>Version</th>
<th>Release Date</th>
<th>Support Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatesgarth</td>
<td>3.2</td>
<td>Oct 2020</td>
<td>Dreaming</td>
</tr>
<tr>
<td>Dunfell</td>
<td>3.1</td>
<td>April 2020</td>
<td>Under development</td>
</tr>
<tr>
<td>Zeus</td>
<td>3.0</td>
<td>October 2019</td>
<td>Stable</td>
</tr>
<tr>
<td>Warrior</td>
<td>2.7</td>
<td>April 2019</td>
<td>Stable</td>
</tr>
<tr>
<td>Thud</td>
<td>2.6</td>
<td>Nov 2018</td>
<td>Stable</td>
</tr>
<tr>
<td>Sumo</td>
<td>2.5</td>
<td>April 2018</td>
<td>Community</td>
</tr>
<tr>
<td>Rocko</td>
<td>2.4</td>
<td>Oct 2017</td>
<td>Community</td>
</tr>
</tbody>
</table>

For details: https://wiki.yoctoproject.org/wiki/Releases
Building an Image

- Checkout the source code with **Repo**:
  ```sh
  mkdir anavi-hub && cd anavi-hub
  repo init -u ssh://git@github.com/AnaviTechnology/anavi-hub.git
  repo sync
  ```

- Set up build environment (by default for Raspberry Pi 4, edit **local.conf** to change the machine):
  ```sh
  TEMPLATECONF=../meta-homebridge/conf/ source poky/oe-init-build-env
  ```

- Build an image:
  ```sh
  bitbake core-image-homebridge
  ```
Alternatively, Just Download an Image

- Binary images for the supported hardware platforms (as of the moment several Raspberry Pi versions) are available as assets at GitHub with each release: https://github.com/AnaviTechnology/anavi-hub/releases

- Recommended for users
Flashing and Booting

- Flash the image on a microSD card using Balena Etcher

- Alternatively, advanced Linux users, can flash the image through the terminal with `dd`:

  ```bash
  sudo umount /dev/sdX*
  xzcat tmp/deploy/images/raspberrypi4-64/core-image-homebridge-raspberrypi4-64.wic.xz |
  sudo dd of=/dev/sdX bs=4M
  ```

- Plug the microSD card and turn on your Raspberry Pi
Homebridge Config-UI-X in Surf (web browser)
Connectivity and Interfacing Options

- SSH (port 22)
- VNC (port 5900)
- Serial
Mounting Raspberry Pi on DIN Rail

- “DIN rail is a metal rail of a standard type widely used for mounting circuit breakers and industrial control equipment inside equipment racks”

- Camdenboss cases

- Joy-It cases for Raspberry Pi 4B or B+, 2B, 3B and 3B+
 https://www.joy-it.net/en/products/RB-CaseP4+07
 https://www.joy-it.net/en/products/RB-Case+07
Raspberry Pi HAT for mini OLED display

- Open source hardware Raspberry Pi hardware attached on top (HAT) with slot for attaching mini OLED display (SSD1306) over I2C, designed with KiCad
- Python 3 script for drawing on the display with luma.core and luma.oled
Raspberry Pi 4 with Case for DIN Rail
How Does it Work?

- Systemd service starts Homebridge and its plugins
- Openbox with X11 starts Surf (web browser) automatically
- Surf displays the Config-UI-X web interface of Homebridge
- Systemd services starts Python script for showing the statuses of Homebridge and Mosquitto on mini OLED display attached over I2C
Yocto/OpenEmbedded Layers

- Poky
- meta-raspberrypi
- meta-openembedded/meta-oe
- meta-openembedded/meta-python
- meta-openembedded/meta-gnome
- meta-openembedded/meta-networking
- meta-homebridge
Surf (web browser)

- Minimalist web browser without any graphical control elements, controlled by keyboard shortcuts
- Developed by suckless.org
- Written in C with WebKitGTK
- Available under MIT License
- https://surf.suckless.org/
Openbox

- Highly configurable stacking window manager for X11
- Written in C and XML for configurations, licensed under GPLv2
- rc.xml - main configuration file of the overall session
- menu.xml - configuration file for the desktop menu, accessible by right-clicking the background
- autostart – automatically starts applications, for our distribution: nm-applet and stalonetray
- http://openbox.org/
Openbox
Snippet from the Yocto/OE recipe:

```plaintext
inherit npm systemd

SRC_URI = "npm://registry.npmjs.org;name=${BPN};version=${PV} \
    file://config.json \n    file://homebridge \n    file://homebridge.service \
"

NPM_SHRINKWRAP := "${THISDIR}/${PN}/npm-shrinkwrap.json"
NPM_LOCKDOWN := "${THISDIR}/${PN}/lockdown.json"

S = "${WORKDIR}/npmpkg"

RDEPENDS_${PN} += " homebridge-config-ui-x"
```
Homebridge at npmjs.com

Install

```bash
> npm i homebridge
```

Weekly Downloads

<table>
<thead>
<tr>
<th>Version</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4.50</td>
<td>ISC</td>
</tr>
</tbody>
</table>
homebridge.service

[Unit]
Description=Homebridge
After=syslog.target network-online.target

[Service]
Type=simple
EnvironmentFile=/etc/default/homebridge
ExecStart=/usr/bin/homebridge \$HOMEBRIDGE_OPTS
Restart=on-failure
RestartSec=3
KillMode=process
CapabilityBoundingSet=CAP_IPC_LOCK CAP_NET_ADMIN CAP_NET_BIND_SERVICE
CAP_NET_RAW CAP_SETGID CAP_SETUID CAP_SYS_CHROOT CAP_CHOWN
CAP_FOWNER CAP_DAC_OVERRIDE CAP_AUDIT_WRITE CAP_SYS_ADMIN
AmbientCapabilities=CAP_NET_RAW

[Install]
WantedBy=multi-user.target
What’s Next?

TODO:
- Continuous integration (CI) and support for future releases of the Yocto Project
- Support more hardware platforms, especially STM32MP1
- Software over the air updates: Mender.io or OSTree with meta-updater
- Integration of more Homebridge plugins out of the box
- Integration of additional open source home automation tools
Benefits for the Ecosystem

Hopefully my efforts so far had the following impact:

- User-friendly Linux distribution for providing Homebridge and other IoT tools out of the box
- Practical example for using Yocto and OpenEmbedded in a maker’s project
- Upstream contributions to `meta-openembedded` to add completely new recipes for `surf` (web browser) and `stalonetray`, to update and improve the recipes for `mosquitto` and `openbox`
Conclusions

- **Homebridge** is an excellent open source software to connect non-officially supported Internet of Things and do-it-yourself (DIY) devices to Apple HomeKit and Siri through various open source plugins.

- **The Yocto Project** and **OpenEmbedded** are super powerful tools for building and optimizing GNU/Linux distribution for the very specific needs of a particular embedded device.

- Although the Yocto Project is de-facto an industry standard, it is still not maker-friendly because of the steep learning curve, long build times and sometimes missing recipes for software that is existing as packages in the ecosystems of popular GNU/Linux distributions like Debian.
Thank you! Any Questions?

- https://homebridge.io/
- https://www.npmjs.com/package/homebridge-config-ui-x
- https://wiki.yoctoproject.org/wiki/Main_Page