Building a low-cost Test Fixture

Guillaume Vier

Agenda

- Background
- Motivations
- Architecture
 - Bed of nails
 - Test Controller
 - Flasher
- Conclusions

Background

- <u>Ubidata</u> founded in 2003 in Brussels
- Telematics and mobile logistics solutions
- We design and build our own battery-powered tracking device

Motivations

- Functional testing at the end of the assembly line
- Run self-test on each PCB
- Program production firmware
- Small form factor:
 - PCB: 67 mm x 36 mm
 - Test points: Ø 0.6 mm, spacing 1.27 mm

Motivations

Standard test fixture (€€€)

Can we build something cheaper with off-the-shelf components?

Architecture

- Bed of nails: custom PCB + soldered test probes
- Test controller: Raspberry Pi Zero
- Flasher: OpenOCD

Custom PCB to:

- align the Device Under Test over the probes
- connect test points to larger header

PCB designed with <u>KiCad</u>

Step 1: schematics

• wire test probes to a larger connector

<u>Step 2</u>: create custom footprint for probe

Constraints:

- manufacturer's capability:
 - pad to pad spacing
 - annular ring size
- Test points spacing
- Probe diameter

Pad size: 1.1 mm x 2 mm, ø 0.75 mm

Step 3: PCB layout

- DUT's edges drawn on silkscreen layer
- Test points' coordinates extracted from DUT's gerber files
- Set origin point for the grid on new layout
- Place footprints with:
 - Position Relative To... -> Use Grid Origin

Test Controller

- Raspberry Pi Zero running <u>TinyCore</u>
 - Minimal Linux system
 - Runs from RAM
- Test scripts written in Python
- Communicate with DUT via UART

Test Controller

Pimoroni Automation pHAT:

- 1 relay -> Supply power to DUT
- 3 ADCs -> Measure voltage rails

Flasher

- Connect to microcontroller via SWD
- <u>OpenOCD</u> compiled with GPIO bitbang support
- ./configure --enable-sysfsgpio --enable-bcm2835gpio
- Running on the Pi Zero
- Define pins for SWD in script

Conclusions

Cost comparison

	Standard	Low-cost
Bed of nails	3000 € - 6000 €	2 PCBs: 24 € 13 probes: 18 € Others: 20 €
Test controller	100 €	RPi Zero + pHAT: 25 €
Flasher	2 x 300 €	0€
Total	3700 € - 6700 €	87 €

Conclusions

- Cheap
- Robust
- Easy to build/replicate

Limitations: not suited if special probes required (e.g. RF probes)

Assembly

References

- Test probes P50 series: <u>https://be.farnell.com/fr-BE/multicomp/p50-e-120-g/levier-large-point/dp/1568259</u>
- Automation pHAT from Pimoroni: <u>https://shop.pimoroni.com/products/automation-phat</u>

