Evolving the GNU Radio scheduler
Embracing and Breaking Legacy

Marcus Miiller

2020-02-01

)0101011110101010100101006+666

PEPGPN

R
What'll happen in the next 40 minutes

Looking back at GNU Radio 3.8

Problems and Challenges

Taking Action

Marcus Miiller

Bearer of a couple of roles

» Research assistant at % / mﬂ(frl:

» | hold the exercise classes for KIT EEs’ Probability Theory and Communications Theory
courses (> 300 students) and Applied Information Theory (ca 13 dB fewer students) and
Machine Learning and Optimization in Communications (next semester)

Ettus

> oo R Support Grumpiness supplier

» Freelancing Engineer!

» Technical Consulting
» Contract Development
» Seminars

» Chief Architect of the GNU Radio project

!Pretty time-limited

Marcus Miiller
Contact

Depending on what you want to talk to me about, contact me using

» University Research & Teaching: mueller@kit.edu
» GNU Radio aspects: Preferably, discuss-gnuradio@gnu.org, for confident matters

mmueller@gnuradio.org
» Freelancing & Private: mueller@hostalia.de

< 0¢.IN3ASO4

008¢
+ 61.N3ASO4
VETLE L08T0C
< 81.N3ASO4
LT,u0Dy9
IRWAS
orpe | 9LUODYED
6°L°¢
(@)
=
= BY g'2'¢ GTuoDYHO
I N _
o v > L.
& < e YAV |
o 22 9.€
e o o _
T 88 GLe
Qo [
DU“ s . | PT,U0DYO
= ™~ o
©) om om €Le
5 3% |
) X o cLe |
2 22 TLE
s G5 0L€ L0-€10C

e N i
What we changed in GNU Radio 3.8

--ignore-all-space: 5220 files changed, 380586 insertions(+), 282592 deletions(-)
» Dependency cleanup: No choice, lots of benefits
> oQt4 — Qt5
» eCheetah/XML — YAML
» Language progression
> ePy2 — Py2.7 OR Py3
> oC++4+98 — C++11
» New functionality

» Better gr-modtool (shoutout to Swapnill)
» C++ code generation (shoutout to Hakon)
» Overall cooler GRC

» Code formatting (way better for development)

e N i
What we didn’t change in GNU Radio 3.8

no changes in the organization of modules
no changes in the project scope

no changes in the way we integrate new functionality

vVvyyvyy

no changes in the “scheduler”

Why the quotation marks?

Everyone loves the GNU Radio “scheduler”?!

Bit of history (World's shortest intro to GNU Radio scheduling)

» Originally
» Convert Flowgraph to flat, acyclic, directed graph
» Find sources, call them
» ripple the data through the very tree-ish structure
» Later: call that the single-threaded scheduler, introducing the

» Thread-per-Block (TPB) scheduler ca. 2009
» Flatten flowgraph to determine data dependencies

» Start a single thread per block
» in that block executor, run while(1){work(); notify neighbors();

wait_for notifications();};

Signal Flow Architecture

Signal Source
Sample Rate: 1.234G
Waveform: Cosine

File Sink

Multiply Const File: out file
. XL Unbuffered: Off
Amplitude: 1 Append file: Overwrite
Offset: 0 i -

Initial Phase (Radians): 0

P backpressure-driven parallel signal processing architecture
» Blocks produce as much output as they can at once, given

» available input data ready at the start of processing
» available output data memory

» asked to produce min(buffer size / 2, available output buffer)
» Block can start working again while downstream block is still consuming

» — high parallelism

e N i
Scheduling Mechanism — Abstracted

Scheduler might be too strong a word

back pressure limits processing speed

great for throughput

not so great for latency

high parallelism stems from the ability to concurrently execute
actual scheduling of threads done by OS

no workload knowledge flows into OS — suboptimal ...

VVyVYVYVYVYYVYY

... but works surprisingly well.

Scheduling Mechanism in detail

» Each block gets its own executing thread?

When notified3,

» ask the block (forecast) whether it can produce output, given the available input and
output space.
If READY

» call general work DSP happening here (this might take some time)
» notify the upstream block(s) that we've consumed — free output buffer
» notify the downstream block(s) that we've produced — new input

If blocked by lack of input

» go to sleep for a while and check back later
If blocked by lack of output space

» go to sleep until notification

2‘cpb:chread,body. cc, block_executor.cc
3ignoring asynchronous message passing

Problems and Challenges

» GNU Radio has ca. 21 years of history
Not all decisions made in that period apply to the current architecture
» to be completely honest, not even all decisions were good

v

» Use cases have evolved

» Beginnings: Nearly only stream (TV, audio broadcast) processing
> Nowadays: Real-time systems doing packetized data

» Environment has changed
» SDR Hardware that supports bursting
» Accelerators (GPUs, FPGAs, even network cards) widely available

» Audience has changed

o PreblemsandChallenges
Challenges for Scheduling

» Every block gets own thread getting scheduled on randomly (OS-)chosen CPU core
» clearly suboptimal
» Memory-mapped Pseudo-Ring Buffers

> Many blocks always consume all input — no need for ring buffer

» hardware-def’ed DMA'd accelerator memory and doubly-mapped pages technologically
mutually exclusive

» Inefficient separate handling of tags, which logically belong to chunks of samples

» Confusion of block and scheduler state in practice

» impossible to exchange block implementations at run time
» or move them across scheduling domains (e.g. other server, or onto an accelerator)

Scheduling Shortcomings

We can do better than letting OS randomly decide which blocks gets executed when on which
CPU core

» Memory locality is much more important than using large chunks of data
» Developer knows more about data dependencies than OS

We let the Single-Threaded Scheduler slowly die, because TPB scaled so well
Now:

» Stuck with Scheduler that works heuristically
» no way to feed in knowledge about data flow*

> no way of observing constraints

*Aside from pinning blocks to CPU cores. See: Kirby Cartwright's A Case Study in Optimizing GNU Radio’s
ATSC Flowgraphs, GRCon 2017

o Tk
Better Scheduling

Short term design goals

We need a scheduler that
» we understand (and know how to fix when it breaks),
» is extensible,
» offers metrics, and
P clearly separates between block and scheduler state.
We need to reduce the block API, being
» as a stateful, but encapsulating data processor

» preserving and enhancing the purity of essence i.e. the ease of just writing a work ()
function,

» while flexible enough to fit accelerators and distributed systems

Taking Action

Prototype newsched 1/2

Implement a block.h
» For host CPU scheduling

» reduced API

» remove scheduler-specific APl components (esp. estimate)

> replace inconsistent ways to communicate state modification (production of messages, tags
and output samples) with clean object interface:
work_return_code_t
work(vector<block,work,input>&5 work_input,

vec‘cor<b1ock,work,ou‘cput>&6 work_output)
> represents both packetized data exchange (buffer pool) and stream data exchange (ring buffer)

— separation of block and scheduler state

Sdata pointers, relevant tags

Scaptures write pointer advance, generated tags
~ MarcusMiller Evolving the GNURadio scheduler 2020-02-01 16/21

o Tk
Taking Action

Prototype newsched 2/2

Workers replacing Thread-Per-Block Block Executor
» Groups all work to be done on a CPU
» Has multi-writer low-latency update queue
P receives messages, ring buffer pointer updates, status changes
» aggregates (aligns, eventually reorders) updates coming in while work was running

— general interface for work done anywhere, not just on CPU

N i
Expected Benefits

Higher Performance of CPU execution due to consecutive blocks being kept sequential on same
core

Ability to transparently move blocks between execution hosts
» still requires efforts on serializing block state, but becomes pretty doable
Ability to allow for development of other/optimized schedulers

» ... instead of hoping that any touch to the only scheduler doesn't break things (or
decrease performance)

» cleaner APl — Important metrics basically free via eBPF profiling
Scheduler APl implementation

» up to now, accelerators are only superficially linked, iterate on APl with accelerator working
groups

» future: coordinate/check constraint (latency, throughput, max ops) between scheduling
domains

Questions?

N
Backup Slides

Expected Concerns

> Wait! That breaks all the existing blocks!

P easy to design shim to make old blocks work within new API
» TPB is a special case: single-block worker

» Wait! This departs from two decades of practice and makes writing blocks harder!
» Hopefully, with wrappers and easier API, this will not have long-term negative impact.

> Wait! You're spending time on redesigning a scheduler when you have 383 open issues on
Github’?!
» Hm, as long as none of the issues is GNU Radio obsolete: archive project, that sounds like a
good idea.

"as of 2020-02-02 00:01
~ MarcusMiiller ~ Evolving the GNURadio scheduler 2020-02-01 20/21

N
Backup Slides

Changes for 3.9

» removal of Python2

P gr-iio and gr-soapy upstream

» trying to replace SWIG with Pybind11
> VOLK fully out-of-tree

	Introduction
	Looking back at GNURadio 3.8
	Problems and Challenges
	Taking Action
	Q&A
	Backup Slides

