
Evolving the GNU Radio scheduler
Embracing and Breaking Legacy

Marcus Müller

2020-02-01



What’ll happen in the next 40 minutes

Looking back at GNU Radio 3.8

Problems and Challenges

Taking Action

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 2 / 21



Introduction

Marcus Müller
Bearer of a couple of roles

I Research assistant at /
I I hold the exercise classes for KIT EEs’ Probability Theory and Communications Theory

courses (> 300 students) and Applied Information Theory (ca 13 dB fewer students) and
Machine Learning and Optimization in Communications (next semester)

I Support Grumpiness supplier
I Freelancing Engineer1

I Technical Consulting
I Contract Development
I Seminars

I Chief Architect of the GNURadio project

1Pretty time-limited
Marcus Müller Evolving the GNURadio scheduler 2020-02-01 3 / 21



Introduction

Marcus Müller
Contact

Depending on what you want to talk to me about, contact me using

I University Research & Teaching: mueller@kit.edu

I GNU Radio aspects: Preferably, discuss-gnuradio@gnu.org, for confident matters
mmueller@gnuradio.org

I Freelancing & Private: mueller@hostalia.de

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 4 / 21



Introduction

State of GNU Radio 2020

GNU Radio 3.7 released June 2013
GNU Radio 3.8 released August 2019

3.
7.

0
3.

7.
1

3.
7.

2

3.
7.

3

3.
7.

4
3.

7.
5

3.
7.

6

3.
7.

7

3.
7.

8

3.
7.

9

3.
7.

10

3.
7.

11

3.
7.

12
.0

3.
7.

13
.0

3.
7.

13
.4

3.
8.

0.
0

20
13

-0
7

G
R

C
on

’1
4

G
R

C
on

’1
5

G
R

C
on

’1
6

G
R

C
on

’1
7

F
O

S
D

E
M

’1
8
→

20
18

-0
7

F
O

S
D

E
M

’1
9
→

F
O

S
D

E
M

’2
0
→

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 5 / 21



GNURadio 3.8

What we changed in GNU Radio 3.8

--ignore-all-space: 5220 files changed, 380586 insertions(+), 282592 deletions(-)
I Dependency cleanup: No choice, lots of benefits

I •Qt4 → Qt5
I •Cheetah/XML → YAML

I Language progression
I •Py2 → Py2.7 OR Py3
I •C++98 → C++11

I New functionality
I Better gr modtool (shoutout to Swapnil!)
I C++ code generation (shoutout to Håkon)
I Overall cooler GRC

I Code formatting (way better for development)

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 6 / 21



GNURadio 3.8

What we didn’t change in GNU Radio 3.8

I no changes in the organization of modules

I no changes in the project scope

I no changes in the way we integrate new functionality

I no changes in the “scheduler”

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 7 / 21



GNURadio 3.8

Why the quotation marks?
Everyone loves the GNURadio “scheduler”?!

Bit of history (World’s shortest intro to GNU Radio scheduling)
I Originally

I Convert Flowgraph to flat, acyclic, directed graph
I Find sources, call them
I ripple the data through the very tree-ish structure

I Later: call that the single-threaded scheduler, introducing the
I Thread-per-Block (TPB) scheduler ca. 2009

I Flatten flowgraph to determine data dependencies
I Start a single thread per block
I in that block executor, run while(1){work(); notify neighbors();

wait for notifications();};

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 8 / 21



GNURadio 3.8

Signal Flow Architecture

I backpressure-driven parallel signal processing architecture
I Blocks produce as much output as they can at once, given

I available input data ready at the start of processing
I available output data memory

I asked to produce min(buffer size / 2, available output buffer)

I Block can start working again while downstream block is still consuming

I → high parallelism

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 9 / 21



GNURadio 3.8

Scheduling Mechanism – Abstracted

I Scheduler might be too strong a word

I back pressure limits processing speed

I great for throughput

I not so great for latency

I high parallelism stems from the ability to concurrently execute

I actual scheduling of threads done by OS

I no workload knowledge flows into OS → suboptimal . . .

I . . . but works surprisingly well.

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 10 / 21



GNURadio 3.8

Scheduling Mechanism in detail

I Each block gets its own executing thread2

When notified3,
I ask the block (forecast) whether it can produce output, given the available input and

output space.
If READY
I call general work DSP happening here (this might take some time)
I notify the upstream block(s) that we’ve consumed → free output buffer
I notify the downstream block(s) that we’ve produced → new input

If blocked by lack of input
I go to sleep for a while and check back later

If blocked by lack of output space
I go to sleep until notification

2tpb thread body.cc, block executor.cc
3ignoring asynchronous message passing

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 11 / 21



Problems and Challenges

Problems and Challenges

I GNU Radio has ca. 21 years of history
I Not all decisions made in that period apply to the current architecture

I to be completely honest, not even all decisions were good

I Use cases have evolved
I Beginnings: Nearly only stream (TV, audio broadcast) processing
I Nowadays: Real-time systems doing packetized data

I Environment has changed
I SDR Hardware that supports bursting
I Accelerators (GPUs, FPGAs, even network cards) widely available

I Audience has changed

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 12 / 21



Problems and Challenges

Challenges for Scheduling

I Every block gets own thread getting scheduled on randomly (OS-)chosen CPU core
I clearly suboptimal

I Memory-mapped Pseudo-Ring Buffers
I Many blocks always consume all input → no need for ring buffer
I hardware-def’ed DMA’d accelerator memory and doubly-mapped pages technologically

mutually exclusive
I Inefficient separate handling of tags, which logically belong to chunks of samples

I Confusion of block and scheduler state in practice
I impossible to exchange block implementations at run time
I or move them across scheduling domains (e.g. other server, or onto an accelerator)

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 13 / 21



Problems and Challenges

Scheduling Shortcomings

We can do better than letting OS randomly decide which blocks gets executed when on which
CPU core

I Memory locality is much more important than using large chunks of data

I Developer knows more about data dependencies than OS

We let the Single-Threaded Scheduler slowly die, because TPB scaled so well
Now:

I Stuck with Scheduler that works heuristically

I no way to feed in knowledge about data flow4

I no way of observing constraints

4Aside from pinning blocks to CPU cores. See: Kirby Cartwright’s A Case Study in Optimizing GNU Radio’s
ATSC Flowgraphs, GRCon 2017

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 14 / 21



Taking Action

Better Scheduling
Short term design goals

We need a scheduler that

I we understand (and know how to fix when it breaks),

I is extensible,

I offers metrics, and

I clearly separates between block and scheduler state.

We need to reduce the block API, being

I as a stateful, but encapsulating data processor

I preserving and enhancing the purity of essence i.e. the ease of just writing a work()

function,

I while flexible enough to fit accelerators and distributed systems

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 15 / 21



Taking Action

Taking Action
Prototype newsched 1/2

Implement a block.h

I For host CPU scheduling
I reduced API

I remove scheduler-specific API components (esp. estimate)
I replace inconsistent ways to communicate state modification (production of messages, tags

and output samples) with clean object interface:
work return code t

work(vector<block work input>&5 work input,

vector<block work output>&6 work output)
I represents both packetized data exchange (buffer pool) and stream data exchange (ring buffer)

−→ separation of block and scheduler state

5data pointers, relevant tags
6captures write pointer advance, generated tags

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 16 / 21



Taking Action

Taking Action
Prototype newsched 2/2

Workers replacing Thread-Per-Block Block Executor

I Groups all work to be done on a CPU

I Has multi-writer low-latency update queue

I receives messages, ring buffer pointer updates, status changes

I aggregates (aligns, eventually reorders) updates coming in while work was running

−→ general interface for work done anywhere, not just on CPU

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 17 / 21



Taking Action

Expected Benefits

Higher Performance of CPU execution due to consecutive blocks being kept sequential on same
core
Ability to transparently move blocks between execution hosts

I still requires efforts on serializing block state, but becomes pretty doable

Ability to allow for development of other/optimized schedulers

I . . . instead of hoping that any touch to the only scheduler doesn’t break things (or
decrease performance)

I cleaner API → Important metrics basically free via eBPF profiling

Scheduler API implementation

I up to now, accelerators are only superficially linked, iterate on API with accelerator working
groups

I future: coordinate/check constraint (latency, throughput, max ops) between scheduling
domains

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 18 / 21



Q&A

Questions?

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 19 / 21



Backup Slides

Backup Slides
Expected Concerns

I Wait! That breaks all the existing blocks!
I easy to design shim to make old blocks work within new API
I TPB is a special case: single-block worker

I Wait! This departs from two decades of practice and makes writing blocks harder!
I Hopefully, with wrappers and easier API, this will not have long-term negative impact.

I Wait! You’re spending time on redesigning a scheduler when you have 383 open issues on
Github7?!
I Hm, as long as none of the issues is GNU Radio obsolete: archive project, that sounds like a

good idea.

7as of 2020-02-02 00:01
Marcus Müller Evolving the GNURadio scheduler 2020-02-01 20 / 21



Backup Slides

Backup Slides
Changes for 3.9

I removal of Python2

I gr-iio and gr-soapy upstream

I trying to replace SWIG with Pybind11

I VOLK fully out-of-tree

Marcus Müller Evolving the GNURadio scheduler 2020-02-01 21 / 21


	Introduction
	Looking back at GNURadio 3.8
	Problems and Challenges
	Taking Action
	Q&A
	Backup Slides

