
Graffiti
A embedded graph database

Sylvain Baubeau

Sylvain Afchain



Graffiti overview
● Originates from Skydive

● Embedded

● Event based

● Time traveling

● High availability

● Query language with extension support



Architecture

POD POD POD

HUB HUB

SEED SEED



Event based
● Graph as a Pub/Sub

○ Internal through callbacks

○ External with websocket

○ Subset of graph

○ Same publish API for all type of endpoint

● Node/Edge create, update, delete event

● Websocket supports different encoding type

○ JSON

○ Protobuf



History
● Revision of every graph modification

● Allow to see the graph at a specific point of time

● Allow to see a set of modification for a period of time

● New Gremlin step to support timed request

○ G.AT(‘-1m’), G.AT(‘01/02/2019 18:55:00’)

○ G.AT(‘-1m’, 30).V(‘123’)

● Support Elasticsearch as backend or OrientDB

● Rolling index mechanism



High availability
● Replication between Hubs

● Pod round-robin connection

● Automatic reconnection with re-sync mechanism

● Etcd master election for rolling index



Gremlin extension
● Has to be written in Go and will available through the REST API

● Sub set of Gremlin with time selection

● Skydive examples :

○ G.V(‘123’).Flows()

○ G.V(‘123’).Metrics()

○ G.V(‘123’).Sockets() => New Graph (can be subscribed)



When to use it (and not)
Good for :

● A Golang embedded project

● Schema and Schema less

● A project which needs to extend Gremlin

● Distributed architecture

● Hierarchy of graphs

No so good for :

● Graph specific algorithm, ex: shortest path

● Node/Edge with lot of metadata

 



WebUI
● Event based

● Search

● Filtering through config file

● Layering support

● Custom action support

● Custom metadata rendering panel



WebUI



Demo



Demo
Python File system watcher :

1. Watches a directory

2. Creates nodes for file or directory

3. Creates edges for ownership and symlinks



Thanks

https://github.com/skydive-project/skydive/tree/master/graffiti

https://github.com/skydive-project/skydive-ui


