Neo4j Graph Data Science Library
An Overview
Max Kießling
What is the Graph Data Science Library?

- Open Source Neo4j Add-On for graph analytics
- Provides a set of high performance graph algorithms
 - Community Detection / Clustering (e.g. Label Propagation)
 - Similarity Calculation (e.g. NodeSimilarity)
 - Centrality Algorithms (e.g. PageRank)
 - PathFinding (e.g. Dijkstra)
 - Link Prediction (e.g. Adamic Adar)
 - and more
- APIs for implementing custom algorithms (e.g. Pregel)
Neo4j GDS - Timeline

Development started as Neo4j Contrib - Graph Algorithms organized by Neo4j Labs, developed by AVGL

Q1 2017

Neo4j Product Engineering takes over the project

Q1 2019

Neo4j Graph Data Science Library Release 1.0

Q2 2020

Q1 2020

Productization of the library
Open Source Preview Release
Local Patterns to Global Computation

Query (e.g. Cypher/SQL)
Real-time, local decisioning and pattern matching

Graph Algorithms Libraries
Global analysis and iterations

You know what you’re looking for and making a decision
You’re learning the overall structure of a network, updating data, and predicting
Workflow

1. Load graph projection into main memory
2. Run algorithm via Cypher procedure
3. Consume result
Available Algorithms

Community Detection
- Label Propagation
- Louvain
- Weakly Connected Components
 - Triangle Count
 - Clustering Coefficients
 - Strongly Connected Components
 - Balanced Triad (identification)

Centrality / Importance
- PageRank
- Personalized PageRank
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality
 - ArticleRank
 - Eigenvector Centrality

Similarity
- Node Similarity
 - Euclidean Distance
 - Cosine Similarity
 - Overlap Similarity
 - Pearson Similarity

Link Prediction
- Adamic Adar
- Common Neighbors
- Preferential Attachment
- Resource Allocations
- Same Community
- Total Neighbors

Pathfinding & Search
- Parallel Breadth First Search
- Parallel Depth First Search
- Shortest Path
- Minimum Spanning Tree
- A* Shortest Path
- Yen’s K Shortest Path
- K-Spanning Tree (MST)
- Random Walk
Demo Time!
CALL gds.<algo-name>.<mode>(
 graphName: STRING,
 configuration: MAP
)

Available Modes:

- **write**: writes results to the Neo4j database and returns a summary of the results.
- **stats**: runs the algorithm and only reports statistics.
- **stream**: streams results back to the user.

CALL gds.wcc.write(
 "got-interactions",
 {
 writeProperty: "component",
 consecutiveIds: true
 }
) YIELDS writeMillis, componentCount

CALL gds.wcc.stream(
 "got-interactions",
 {}
) YIELDS nodeId, componentId
Take a look!

The Neo4j Graph Data Science Library is Open Source

https://github.com/neo4j/graph-data-science
Section Slide
Section Slide