
GraphBLAS: A linear algebraic approach
for high-performance graph algorithms

Gábor Szárnyas
szarnyas@mit.bme.hu

OUTLINE

 What makes graph computations difficult?

 The GraphBLAS standard

 Theoretical foundations of GraphBLAS

 Graph algorithms in GraphBLAS

 Graph processing in relational algebra

 GraphBLAS internals and API

 Further reading and libraries

 Summary

What makes graph computations difficult?

GRAPH PROCESSING CHALLENGES

the “curse of connectedness”

contemporary computer architectures are good at
processing linear and hierarchical data structures,
such as Lists, Stacks, or Trees

a massive amount of random data access is required,
CPU has frequent cache misses, and implementing
parallelism is difficult

B. Shao, Y. Li, H. Wang, H. Xia (Microsoft Research),
Trinity Graph Engine and its Applications,
IEEE Data Engineering Bulleting 2017

connectedness

computer
architectures

caching and
parallelization

http://sites.computer.org/debull/A17sept/p18.pdf
http://sites.computer.org/debull/A17sept/p18.pdf

GRAPH PROCESSING CHALLENGES

What does it mean that graph algorithms have
“a high communication to computation ratio”? [ICCS’15]

Most of the time is spent on chasing pointers.

Speedup with a CPU that has better arithmetic performance:

 machine learning → a lot

 relational query → some

 graph processing → very little

Standard latency hiding techniques break down:
 pre-fetching and branch prediction provide little benefit

DISTRIBUTED GRAPH PROCESSING

 Many recent works focused on computation models for
distributed execution allowing systems to scale out.

o BSP (Bulk Synchronous Parallel) model by Leslie Valiant

oMapReduce and Pregel models by Google

o Vertex-centric, Scatter-Gather, Gather-Apply-Scatter models

o Apache projects: Giraph, Spark GraphX, Flink Gelly, Hama

 Lots of research, summarized in survey/experiments papers

V. Kalavri et al.: High-Level Programming Abstractions
for Distributed Graph Processing, TKDE 2018

K. Ammar, M.T. Özsu: Experimental Analysis of
Distributed Graph Systems, VLDB 2018

M.T. Özsu: Graph Processing: A Panaromic
View and Some Open Problems, VLDB 2019

O. Batarfi et al.: Large scale graph processing systems:
survey and an experimental evaluation, Cluster 2015

https://arxiv.org/pdf/1607.02646.pdf
https://arxiv.org/pdf/1607.02646.pdf
http://www.vldb.org/pvldb/vol11/p1151-ammar.pdf
http://www.vldb.org/pvldb/vol11/p1151-ammar.pdf
https://vldb2019.github.io/files/VLDB19-keynote-1-slides.pdf
https://vldb2019.github.io/files/VLDB19-keynote-1-slides.pdf
https://www.researchgate.net/profile/Sherif_Sakr/publication/282546428_Large_scale_graph_processing_systems_survey_and_an_experimental_evaluation/links/561be4aa08ae044edbb38929/Large-scale-graph-processing-systems-survey-and-an-experimental-evaluation.pdf
https://www.researchgate.net/profile/Sherif_Sakr/publication/282546428_Large_scale_graph_processing_systems_survey_and_an_experimental_evaluation/links/561be4aa08ae044edbb38929/Large-scale-graph-processing-systems-survey-and-an-experimental-evaluation.pdf

SCALING OUT VS. SCALING UP

 Distributed approaches are scalable but comparatively slow

o large communication overhead

o load balancing issues due to irregular distributions

 Many systems struggle to outperform a single-threaded setup

o COST = Configuration that Outperforms a Single Thread

 Alternatives:

o Partition-centric programming model (Blogel, etc.)

o Linear algebra-based programming model

F. McSherry et al.:
Scalability! But at what COST?
HotOS 2015

N. Satish et al.:
Navigating the Maze of Graph Analytics Frameworks
using Massive Graph Datasets, SIGMOD 2014

https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://mobisocial.stanford.edu/papers/sigmod14n.pdf
https://mobisocial.stanford.edu/papers/sigmod14n.pdf

LINEAR ALGEBRA-BASED GRAPH PROCESSING

 Graphs are encoded as sparse adjacency matrices.

 Use vector/matrix operations to express graph algorithms.

𝐯 1 1

𝐀
 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 2 𝐯𝐀

TEXTBOOKS ON SEMIRING-BASED GRAPH PROCESSING

 1974: Aho-Hopcroft-Ullman book

o The Design and Analysis of Computer Algorithms

• Sec. 5.6: Path-finding problems

• Sec. 5.9: Path problems and matrix multiplication

 1990: Cormen-Leiserson-Rivest book

o Introduction to Algorithms

• Sec. 26.4: A general framework for solving path problems in directed graphs

 2011: GALLA book (edited by Kepner and Gilbert)

o Graph Algorithms in the Language of Linear Algebra

A lot of literature but few practical implementations.

https://books.google.hu/books/about/The_design_and_analysis_of_computer_algo.html?id=SJJQAAAAMAAJ&redir_esc=y
https://books.google.hu/books/about/The_design_and_analysis_of_computer_algo.html?id=SJJQAAAAMAAJ&redir_esc=y
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964

The GraphBLAS standard

THE GRAPHBLAS STANDARD

BLAS GraphBLAS

Hardware architecture Hardware architecture

Numerical applications Graph analytical apps

LAGraphLINPACK/LAPACK

S. McMillan @ SEI Research Review (Carnegie Mellon University, 2015):
Graph algorithms on future architectures

Separation of concernsSeparation of concerns

Goal: separate the concerns of the hardware/library/application designers.

 1979: BLAS Basic Linear Algebra Subprograms

 2001: Sparse BLAS an extension to BLAS (little uptake)

 2013: GraphBLAS an effort to define standard building blocks
for graph algorithms in the language of linear algebra

https://www.youtube.com/watch?v=-sIdS4cz7-4
https://www.youtube.com/watch?v=-sIdS4cz7-4

GRAPHBLAS TIMELINE

2013 2014 2015 2016 2017 2018 20192011 2012

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf

GRAPH ALGORITHMS IN LINEAR ALGEBRA

problem algorithm
canonical

complexity Θ
LA-based

complexity Θ

breadth-first search 𝑚 𝑚

single-source shortest paths
Dijkstra 𝑚 + 𝑛 log 𝑛 𝑛2

Bellman-Ford 𝑚𝑛 𝑚𝑛

all-pairs shortest paths Floyd-Warshall 𝑛3 𝑛3

minimum spanning tree
Prim 𝑚 + 𝑛 log 𝑛 𝑛2

Borůvka 𝑚 log 𝑛 𝑚 log 𝑛

maximum flow Edmonds-Karp 𝑚2𝑛 𝑚2𝑛

maximal independent set
greedy 𝑚 + 𝑛 log 𝑛 𝑚𝑛 + 𝑛2

Luby 𝑚 + 𝑛 log 𝑛 𝑚 log 𝑛

Based on the table in J. Kepner:
Analytic Theory of Power Law Graphs,
SIAM Workshop for HPC on Large Graphs, 2008

Notation: 𝑛 = 𝑉 ,𝑚 = |𝐸|. The complexity cells contain asymptotic bounds.
Takeaway: The majority of common graph algorithms can be expressed efficiently in LA.

See also L. Dhulipala, G.E. Blelloch, J. Shun:
Theoretically Efficient Parallel Graph Algorithms
Can Be Fast and Scalable, SPAA 2018

http://www.graphanalysis.org/SIAM-PP08/Kepner.pdf
http://www.graphanalysis.org/SIAM-PP08/Kepner.pdf
https://people.csail.mit.edu/jshun/spaa2018.pdf
https://people.csail.mit.edu/jshun/spaa2018.pdf

Theoretical foundations of GraphBLAS

MATRIX MULTIPLICATION

Definition:
𝐂 = 𝐀𝐁

𝐂 𝑖, 𝑗 = Σ
𝑘
𝐀 𝑖, 𝑘 ⋅ 𝐁 𝑘, 𝑗

Example:

𝐂 2,3 = 𝐀 2,1 ⋅ 𝐁 1,3 +

𝐀 2,2 ⋅ 𝐁 2,3

= 2 ⋅ 5 + 3 ⋅ 4 = 22

22

𝐀

2 3

𝐁

5

4

𝐂 = 𝐀 ⋅ 𝐁

10 +12
= 22

3 · 4 = 12

2 · 5 = 10

ADJACENCY MATRIX

𝐀

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸

ADJACENCY MATRIX

𝐀

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸

source

target

ADJACENCY MATRIX

𝐀

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸

ADJACENCY MATRIX TRANSPOSED

𝐀⊤

 1

 1

 1 1 1

 1 1

 1 1

 1 1

 1

𝐀𝑖𝑗
⊤ = ൝

1 if (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸

0 if (𝑣𝑗 , 𝑣𝑖) ∉ 𝐸

ADJACENCY MATRIX TRANSPOSED

𝐀⊤

 1

 1

 1 1 1

 1 1

 1 1

 1 1

 1

𝐀𝑖𝑗
⊤ = ൝

1 if (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸

0 if (𝑣𝑗 , 𝑣𝑖) ∉ 𝐸

 source

target

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

𝐯 1

𝐀

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

one-hop: 𝐯𝐀

𝐯𝐀𝑘 means 𝑘 hops in the graph

1 1 1

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

𝐯 1

𝐀

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

one-hop: 𝐯𝐀

𝐯𝐀𝑘 means 𝑘 hops in the graph

1 1 1

𝐀

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 1 2

two-hop: 𝐯𝐀𝟐

MATRIX MULTIPLICATION ON SEMIRINGS

 Using the conventional semiring
𝐂 = 𝐀𝐁
𝐂 𝑖, 𝑗 = Σ

𝑘
𝐀 𝑖, 𝑘 ⋅ 𝐁 𝑘, 𝑗

 Generalized formula*
𝐂 = 𝐀⨁.⨂ 𝐁
𝐂 𝑖, 𝑗 =⊕

𝑘
𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

 A cornerstone of GraphBLAS: Use arbitrary semirings that
override the ⨁ addition and ⨂ multiplication operators.

* Remark: Some definitions in the presentation are simplified.
The full definitions are given at the end of the slideshow.

GRAPHBLAS SEMIRINGS*

The 𝐷,⊕,⊗, 0 algebraic structure is a GraphBLAS semiring if

 𝐷,⊕, 0 is a commutative monoid using the addition
operation ⊕:𝐷 × 𝐷 → 𝐷, where ∀𝑎, 𝑏, 𝑐 ∈ 𝐷:

o Commutative 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎

o Associative 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕ 𝑏⊕ 𝑐

o Identity 𝑎 ⊕ 0 = 𝑎

 The multiplication operator is a closed binary operator
⊗:𝐷 × 𝐷 → 𝐷.

The mathematical definition of a semiring requires that ⊗ is a monoid
and distributes over ⊕. GraphBLAS omits these requirements.

SEMIRINGS

semiring set ⨁ ⨂ 0 graph semantics

lor-land 𝑎 ∈ F, T ⋁ ⋀ F connectivity

integer arithmetic 𝑎 ∈ ℕ + ⋅ 0 number of paths

real arithmetic 𝑎 ∈ ℝ + ⋅ 0 strength of all paths

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞ shortest path

max-plus 𝑎 ∈ ℝ ∪ −∞ max + −∞ graph matching

The default semiring is the conventional one:

 Operator ⊗ defaults to floating point multiplication.

 Operator ⊕ defaults to floating point addition.

MATRIX-VECTOR MULTIPLICATION SEMANTICS

Semantics: number of paths

semiring set ⨁ ⨂ 0

integer arithmetic 𝑎 ∈ ℕ + ⋅ 0

𝐯 1 1

𝐀
 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 2 0

1·1=1

1+1=2

1·1=1

𝐯⊕.⊗ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F

Semantics: reachability

𝐯 T T

𝐀
 T T
 T T
 T
 T T
 T
 T
 T T T

T T F

T∧T=T

T∧T=T

T∨T=T 𝐯 ∨.∧ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

real arithmetic 𝑎 ∈ ℝ + ⋅ 0

.2

.4

.5

.6

Semantics: strength of all paths

 .5

𝐯 .5 .6

𝐀
 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.1 .5 0

0.5·0.4=0.2

0.6·0.5=0.3

0.2+0.3=0.5 𝐯⊕.⊗ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞

Semantics: shortest path

.2

.4

.5

.6

 .5

𝐯 .5 .6

𝐀
 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.7 .9 ∞

min(0.9,1.1)=0.9 𝐯 min .+ 𝐀

0.5+0.4=0.9

0.6+0.5=1.1

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

max-plus 𝑎 ∈ ℝ ∪ −∞ max + −∞

Semantics: matching (independent edge set)

.2

.4

.5

.6

 .5

𝐯 .5 .6

𝐀
 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.7 1.1 −∞

0.5+0.4=0.9

0.6+0.5=1.1

max(0.9,1.1)=1.1 𝐯 max .+ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

min-times 𝑎 ∈ ℝ ∪ +∞ min ⋅ +∞

Semantics: shortest product of connections

.2

.4

.5

.6

 .5

𝐯 .5 .6

𝐀

 .2 .4

 .5

.1 .2 ∞

0.5·0.4=0.2

0.6·0.5=0.3

min(0.2,0.3)=0.2 𝐯 min.⊗ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

max-min 𝑎 ∈ 0,+∞ max min 0

Semantics: longest of all shortest connections

.2

.4

.5

.6

 .5

𝐯 .5 .6

𝐀

 .2 .4

 .5

.1 .2 0

min(0.5, 0.4)=0.4

min(0.6,
0.5)=0.5

max(0.4,0.5)=0.5 𝐯 min.⊗ 𝐀

ELEMENT-WISE MULTIPLICATION: 𝐀 ∧ 𝐁

𝐀

𝐁

𝐀 ∧ 𝐁

∧ =

∧ =

ELEMENT-WISE ADDITION: 𝐀 ∨ 𝐁

𝐀

𝐁

∨ =

𝐀 ∨ 𝐁

∨ =

TURNING A GRAPH INTO UNDIRECTED: 𝐀 ∨ 𝐀⊤

𝐀

𝐀⊤

𝐀 ∨ 𝐀⊤

∨

∨

=

=

NOTATION*

 Symbols:

o 𝐀,𝐁, 𝐂,𝐌 – matrices

o 𝐮, 𝐯,𝐰,𝐦 – vectors

o 𝑠 – scalar

o 𝑖, 𝑗 – indices

o 𝐌 , 𝐦 – masks

 Operators:

o ⊕– addition

o ⊗– multiplication

o ⊤ – transpose

o ⊘– element-wise division

Vectors can act as both column and row vectors.

(Notation omitted for accumulator, selection, extraction, assignment…)

symbol operation notation

⊕.⊗

matrix-matrix multiplication 𝐂 𝐌 = 𝐀⊕.⊗ 𝐁

vector-matrix multiplication 𝐰 𝐦 = 𝐯⊕.⊗ 𝐀

matrix-vector multiplication 𝐰 𝐦 = 𝐀⊕.⊗ 𝐯

⊗
element-wise multiplication
(set intersection of patterns)

𝐂 𝐌 = 𝐀⊗𝐁

𝐰 𝐦 = 𝐮⊗ 𝐯

⊕
element-wise addition
(set union of patterns)

𝐂 𝐌 = 𝐀⊕𝐁

𝐰 𝐦 = 𝐮⊕ 𝐯

𝑓 apply unary operator
𝐂 𝐌 = 𝑓 𝐀

𝐰 𝐦 = 𝑓 𝐯

⊕⋯
reduce to vector 𝐰 𝐦 = ⊕𝑗 𝐀 : , 𝑗

reduce to scalar 𝑠 = ⊕𝑖𝑗 𝐀 𝑖, 𝑗

𝐀⊤ transpose matrix 𝐂 𝐌 = 𝐀⊤

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #1

⊗

Sparse matrix times sparse vector:
process incoming edges

Element-wise multiplication:
intersection of non-zero elements

⊕.⊗

Sparse vector times sparse matrix:
process outgoing edges

⊕

Element-wise addition:
union of non-zero elements

⊕.⊗

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #2

⊕.⊗

Sparse matrix times sparse matrix:
process connecting outgoing edges

Matrix transpose:
reverse edges

⊤

1 1 1

1 1
1

Reduction:
aggregate values in each row

⊕𝑖 𝐀 𝑖, ∶
3

2
1

1 2 3

3 2
1

Apply:
apply unary operator on all values

𝑓
1 4 9

9 4
1

Graph algorithms in GraphBLAS

ALGORITHMS

 Breadth-first search

o Levels

o Parents

oMulti-source

 Bellman-Ford

 PageRank

 Triangle count

oNaïve

oMasked

o Cohen’s algorithm

o Sandia

o CMU

 Local clustering coefficient

 𝑘-truss

 CDLP (Community Detection
using Label Propagation)

Graph algorithms in GraphBLAS

Breadth-first search

BFS: BREADTH-FIRST SEARCH

 Algorithm:

o Start from a given vertex

o “Explore all neighbour vertices at the present level prior to
moving on to the vertices at the next level” [Wikipedia]

 Variants:

o Levels compute traversal level for each vertex

o Parents compute parent for each vertex

oMSBFS start traversal from multiple source vertices

Graph algorithms in GraphBLAS

Breadth-first search / Levels

BFS – LEVELS

semiring set ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F

level = 1

𝐪

𝐀

𝐯 1

𝐪′ ത𝐯 = 𝐪 ∨.∧ 𝐀level

BFS – LEVELS

semiring set ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F

level = 2

𝐪

𝐀

𝐯 1 2 2

𝐪′ ത𝐯 = 𝐪 ∨.∧ 𝐀level

BFS – LEVELS

semiring set ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F

level = 3

𝐪

𝐀

𝐯 1 2 3 2 3 3

𝐪′ ത𝐯 = 𝐪 ∨.∧ 𝐀level

BFS – LEVELS

semiring set ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F

level = 4

𝐪

𝐀

𝐯 1 2 3 2 3 4 3

𝐪′ ത𝐯 = 𝐪 ∨.∧ 𝐀

𝐪′ is empty
→ terminate

level

BFS – LEVELS: ALGORITHM

 Input: adjacency matrix 𝐀, source vertex 𝑠, #vertices 𝑛

 Output: vector of visited vertices 𝐯 (integer)

 Workspace: queue vector 𝐪 (Boolean)

1. 𝐪 𝑠 = T

2. for level = 1 to 𝑛 − 1 *terminate earlier if 𝐪 is empty

3. 𝐯 𝐪 = level only change the values under the mask

4. clear 𝐪 set all elements of 𝐪 to F

5. 𝐪 ത𝐯 = 𝐪 ∨.∧ 𝐀 use the lor-land semiring

Graph algorithms in GraphBLAS

Breadth-first search / Parents

BFS – PARENTS

𝐰 1 0 1 1

𝐀

semiring set ⨁ ⨂ 0

min-select 1st 𝑎 ∈ ℕ ∪ +∞ min sel1st +∞

𝐩 ഥ𝐩 = 𝐰min. sel1st 𝐀

𝐰′ 2 4

sel1st 𝑥, 𝑦 = 𝑥

index

BFS – PARENTS

𝐰 2 4 0 1 4 1 2 2

𝐀

𝐩 ഥ𝐩 = 𝐰min. sel1st 𝐀

𝐰′ 3 5 7

semiring set ⨁ ⨂ 0

min-select 1st 𝑎 ∈ ℕ ∪ +∞ min sel1st +∞

sel1st 𝑥, 𝑦 = 𝑥

index

BFS – PARENTS

𝐰 3 5 7 0 1 4 1 2 3 2

𝐀

𝐰′ 6

𝐩 ഥ𝐩 = 𝐰min. sel1st 𝐀

semiring set ⨁ ⨂ 0

min-select 1st 𝑎 ∈ ℕ ∪ +∞ min sel1st +∞

sel1st 𝑥, 𝑦 = 𝑥

index

BFS – PARENTS

𝐰 6 0 1 4 1 2 3 2

𝐀

𝐩 ഥ𝐩 = 𝐰min. sel1st 𝐀

𝐰′

semiring set ⨁ ⨂ 0

min-select 1st 𝑎 ∈ ℕ ∪ +∞ min sel1st +∞

sel1st 𝑥, 𝑦 = 𝑥

𝐰′ is empty
→ terminate

index

BFS – PARENTS: ALGORITHM

 Input: adjacency matrix 𝐀, source vertex 𝑠, #vertices 𝑛

 Output: parent vertices vector 𝐩 (integer)

 Workspace: vertex index vector 𝐱 (integer), wavefront
vector 𝐰 (integer), unvisited vertices vector 𝐮 (Boolean)

1. 𝐱 = 1 2 … 𝑛

2. 𝐰 𝑠 = 𝑠

3. for 𝑙 = 1 to 𝑛 − 1 *terminate earlier if we reach a fixed point

4. 𝐮 = pattern ഥ𝐩

5. 𝐩 𝐮 = 𝐰min. sel1st 𝐀

6. 𝐰 𝐮 = pattern 𝐩 ⊗ 𝐱

Graph algorithms in GraphBLAS

Multi-source BFS

MULTI-SOURCE BFS – LEVELS

semiring set ⨁ ⨂ 0

lor-land 𝑎 ∈ F, T ∨ ∧ F

𝐁 ∨.∧ 𝐀

𝐀

𝐁

level …

MULTI-SOURCE BFS – PARENTS

𝐁min. sel1st 𝐀

semiring set ⨁ ⨂ 0

min-select 1st 𝑎 ∈ ℕ ∪ +∞ min sel1st +∞

𝐀

𝐁

 1

 3

 4

1 1

3

4 4

BFS – PERFORMANCE

 Naïve BFS impls are sometimes slow on real graphs with
skewed distributions – further optimizations are needed.

 Direction-optimizing BFS was published in 2012.

o Switches between push (𝐯𝐀) and pull (𝐀⊤𝐯) during execution:

• Use the push direction when the frontier is small

• Use the pull direction when the frontier becomes large

o Adopted to GraphBLAS in 2018

S. Beamer, K. Asanovic, D. Patterson:
Direction-Optimizing Breadth-First Search, SC 2012

C. Yang, A. Buluç, J.D. Owens: Implementing
Push-Pull Efficiently in GraphBLAS, ICPP 2018

C. Yang: High-performance linear algebra-based graph
framework on the GPU, PhD thesis, UC Davis, 2019

A. Buluç: GraphBLAS: Concepts, algorithms, and
applications, Scheduling Workshop, 2019

https://arxiv.org/pdf/1804.03327.pdf
https://arxiv.org/pdf/1804.03327.pdf
http://www.scottbeamer.net/pubs/beamer-sc2012.pdf
http://www.scottbeamer.net/pubs/beamer-sc2012.pdf
https://escholarship.org/uc/item/37j8j27d
https://escholarship.org/uc/item/37j8j27d
https://scheduling2019.sciencesconf.org/file/566318
https://scheduling2019.sciencesconf.org/file/566318

Graph algorithms in GraphBLAS

Single-source shortest path

SSSP – SINGLE-SOURCE SHORTEST PATHS

 Problem:

o From a given start vertex 𝑠, find the shortest paths to every other
(reachable) vertex in the graph

 Bellman-Ford algorithm:

o Relaxes all edges in each step

oGuaranteed to find the shortest path using at most 𝑛 − 1 steps

 Observation:

o The relaxation step can be captured using a VM multiplication

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4

.5

𝐝 0

𝐀
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4

.5

𝐝 0

𝐀
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 .8

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4

.5

𝐝 0 .3 .8

𝐀
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1.2 .8 .4 1

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4

.5

𝐝 0 .3 1.2 .8 .4 1

𝐀
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1.1 .8 .4 .5 1

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4

𝐝 0 .3 1.1 .8 .4 .5 1

𝐀
 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1 .8 .4 .5 1

.5

.5

.3

.8

.8

.7 .1

.5

.1

.1

semiring set ⨁ ⨂ 0

min-plus 𝑎 ∈ ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD ALGO.

Input: adjacency matrix 𝐀, source vertex 𝑠, #vertices 𝑛

𝐀𝑖𝑗 = ൞

0 if 𝑖 = 𝑗

𝑤 𝑒𝑖𝑗 if 𝑒𝑖𝑗 ∈ 𝐸

∞ if 𝑒𝑖𝑗 ∉ 𝐸

Output: distance vector 𝐝 (real)

1. 𝐝 = ∞∞…∞

2. 𝐝 𝑠 = 0

3. for 𝑘 = 1 to 𝑛 − 1 *terminate earlier if we reach a fixed point

4. 𝐝 = 𝐝min.+𝐀

Optimizations for BFS (push/pull) also work here.

Graph algorithms in GraphBLAS

PageRank

PAGERANK – DEFINITION (AS IN GRAPHALYTICS)

We use one of the simpler definitions. For 𝑘 = 1 to 𝑡 iterations:

PR0 𝑣 =
1

𝑛
, 𝐝 𝑣 = ቊ

1 if deg 𝑣 ≥ 1
0 otherwise

PR𝑘 𝑣 =
1 − 𝛼

𝑛
+ 𝛼 ⋅

𝑢∈𝑁in 𝑣

PR𝑘−1 𝑢

𝑁out 𝑢
+

𝛼

𝑛
⋅

𝑤∈𝑑

PR𝑘−1 𝑤

𝛼: damping factor; 𝑑: dangling vertices, 𝑑 = 𝑤 ∈ 𝑉| 𝑁out = 0

There are dozens of PR definitions, some treat dangling vertices differently.

teleport influence dangling

PAGERANK – IN LINEAR ALGEBRA

Initially:

pr0 = 1 1…1 ⊘ 𝑛, 𝐝 = ∨𝑗 𝐀 : , 𝑗

In each iteration:

PR𝑘 𝑣 =
1 − 𝛼

𝑛
+ 𝛼 ⋅

𝑢∈𝑁in 𝑣

PR𝑘−1 𝑢

𝑁out 𝑢
+

𝛼

𝑛
⋅

𝑤∈𝑑

PR𝑘−1 𝑤

pr𝑘 =
1 − 𝛼

𝑛
⊕ 𝛼⊗

pr𝑘−1
d

⊕.⊗ 𝐀 ⊕
𝛼

𝑛
⊗ ⊕𝑖 pr𝑘 ⊗d 𝑖

constant SpMV element-wise sparse vector-
dense vector multiplication

PAGERANK – ALGORITHM

Input: adjacency matrix 𝐀, damping factor 𝛼, #iterations 𝑡,
#vertices 𝑛

Output: PageRank 𝐩𝐫 (real)

Workspace: dangling vertices 𝐝 (Boolean)

1. 𝐩𝐫 = 1 1…1 ⊘ 𝑛

2. 𝐝 = ∨𝑗 𝐀 : , 𝑗

3. for 𝑘 = 1 to 𝑡

4.

PageRank variant using Markov models are more difficult to express.

𝐩𝐫 =
1 − 𝛼

𝑛
⊕ 𝛼⊗

𝐩𝐫

d
⊕.⊗ 𝐀 ⊕

𝛼

𝑛
⊗ ⊕𝑖 pr⊗ d 𝑖

Graph algorithms in GraphBLAS

Local clustering coefficient

LCC: LOCAL CLUSTERING COEFFICIENT

LCC 𝑣 =
#edges between neighbours of 𝑣

#possible edges between neighbours of 𝑣
=

If 𝑁 𝑣 ≤ 1, LCC 𝑣 = 0

Important metric in social network analysis.

The numerator is the number of triangles in 𝑣, tri(𝑣).

The denominator is the number of wedges in 𝑣, wed(𝑣).

LCC 𝑣 =
tri(𝑣)

wed 𝑣

The difficult part is tri(𝑣).

𝑣

𝑣

LCC EXAMPLE: NAÏVE APPROACH

2

8

4

6

6

2

2

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

2 6 4 7 4 3 4

6 6 6 11 8 5 9

4 6 4 8 4 7 9

7 11 8 8 5 10 12

4 8 4 5 2 8 9

3 5 7 10 8 2 4

4 9 9 12 9 4 6

𝐭𝐫𝐢 = diag−1 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀

2

6

4

8

2

2

6

𝐭𝐫𝐢

LCC: NUMBER OF TRIANGLES IN EACH VERTEX

Observation: Matrix 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀 is not sparse.

Optimization: Use element-wise multiplication ⊗ to close
wedges into triangles:

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

Then, perform a row-wise summation to get the number of
triangles in each row:

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

LCC EXAMPLE: ELEMENT-WISE MULTIPLICATION

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6

2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

𝐓𝐑𝐈

LCC EXAMPLE: ELEMENT-WISE MULTIPLICATION

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6

2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

Masking limits where the
operation is computed.
Here, we use 𝐀 as a mask
for 𝐀⊕.⊗ 𝐀.

LCC: NUMBER OF WEDGES IN EACH VERTEX

LCC 𝑣 =
tri(𝑣)

wed 𝑣

 For wed 𝑣 , we determine the #wedges for each vertex as
the 2-permutation of its degree:

perm2 𝑥 = 𝑥 ⋅ 𝑥 − 1

 Given the degrees 𝐝𝐞𝐠 = ⊕𝑗 𝐀 : , 𝑗 , we compute 𝐰𝐞𝐝

by applying a unary function on the elements of the vector:

𝐰𝐞𝐝 = perm2 𝐝𝐞𝐠

LCC EXAMPLE: NUMBER OF WEDGES

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2

4

3

5

3

3

4

𝐝𝐞𝐠

⊕𝑗 𝐀 : , 𝑗

2

12

6

20

6

6

12

𝐰𝐞𝐝

2

5

3

4

4

3

3

1

10

3

6

6

3

3

perm2 ⋯

LCC EXAMPLE: COMPLETE ALGORITHM

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

2

6

4

8

2

2

6

1.00

0.40

0.67

0.50

0.50

0.33

0.33

𝐭𝐫𝐢

⊕𝑗 ⋯
⊘

2

12

6

20

6

6

12

1.00

0.50

0.67

0.40

0.33

0.33

0.50

𝐰𝐞𝐝

=

𝐥𝐜𝐜

2

4

3

5

3

3

4

𝐝𝐞𝐠

⊕𝑗 ⋯ perm2 ⋯

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

LCC: ALGORITHM

Input: adjacency matrix 𝐀

Output: vector 𝐥𝐜𝐜

Workspace: matrix 𝐓𝐑𝐈, vectors 𝐝𝐞𝐠, 𝐥𝐜𝐜, and 𝐰𝐞𝐝

1. 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀 triangle count matrix

2. 𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 triangle count vector

3. 𝐝𝐞𝐠 = ⊕𝑗 𝐀 : , 𝑗 vertex degree vector

4. 𝐰𝐞𝐝 = perm2 𝐝𝐞𝐠 wedge count vector

5. 𝐥𝐜𝐜 = 𝐭𝐫𝐢 ⊘𝐰𝐞𝐝 LCC vector

M. Aznaveh, J. Chen, T.A. Davis, B. Hegyi, S.P. Kolodziej, T.G. Mattson, G. Szárnyas:
Parallel GraphBLAS with OpenMP, Workshop on Combinatorial Scientific Computing 2020

http://faculty.cse.tamu.edu/davis/publications_files/CSC20_OpenMP_GraphBLAS.pdf
http://faculty.cse.tamu.edu/davis/publications_files/CSC20_OpenMP_GraphBLAS.pdf

LCC: FURTHER OPTIMIZATIONS

Further optimization: use 𝐋, the lower triangular part of 𝐀.

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

The number of wedges is now the 2-combination of 𝐝𝐞𝐠.

comb2 𝑥 =
𝑥 ⋅ 𝑥 − 1

2
Permuting the adjacency matrix allows further optimizations.

LCC EXAMPLE: LOWER TRIANGULAR PART OF MX.

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐋

 1

 1 1 1

 1

 1 1 1

 1 1 1 1

1

1 1 1

2

1 1 2

1

1

2 1

1

3

2

4

1

1

3

1.00

0.40

0.67

0.50

0.50

0.33

0.33

𝐭𝐫𝐢

⊕𝑗 ⋯
⊘

1

6

3

10

3

3

6

1.00

0.50

0.67

0.40

0.33

0.33

0.50

𝐰𝐞𝐝

=

𝐥𝐜𝐜

𝐝𝐞𝐠

comb2 ⋯

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

2

4

3

5

3

3

4

⊕𝑗 ⋯

Graph algorithms in GraphBLAS

Triangle count / Definition

TRIANGLE COUNT

 IEEE GraphChallenge: an annual
competition at the HPEC conference

 The task of the 2017 GraphChallenge
was triangle count: given a graph G,
count the number of triangles.

 Triangle = “set of three mutually
adjacent vertices in a graph”

 Many solutions employed a linear
algebraic computation model

GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018

2

8

4

6

6

2

2

Number of unique triangles:

30

6

Graph algorithms in GraphBLAS

Triangle count / Naïve algorithm

LCC EXAMPLE: NAÏVE APPROACH

2

8

4

6

6

2

2

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

2 6 4 7 4 3 4

6 6 6 11 8 5 9

4 6 4 8 4 7 9

7 11 8 8 5 10 12

4 8 4 5 2 8 9

3 5 7 10 8 2 4

4 9 9 12 9 4 6

𝐭𝐫𝐢 = diag−1 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀

2

6

4

8

2

2

6

𝐭𝐫𝐢

Graph algorithms in GraphBLAS

Triangle count / Masked algorithm

LCC EXAMPLE: ELEMENT-WISE MULTIPLICATION

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6

2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

𝐓𝐑𝐈

LCC EXAMPLE: ELEMENT-WISE MULTIPLICATION

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6

2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

Masking limits where the
operation is computed.
Here, we use 𝐀 as a mask
for 𝐀⊕.⊗ 𝐀.

Graph algorithms in GraphBLAS

Triangle count / Cohen’s algorithm

COHEN’S ALGORITHM: PSEUDOCODE

J. Cohen: Graph Twiddling in a MapReduce World, Comput. Sci. Eng. 2009

Input: adjacency matrix 𝐀

Output: triangle count 𝒕

Workspace: matrices 𝐋, 𝐔, 𝐁, 𝐂

1. 𝐋 = tril 𝐀 extract the lower triangle from A

2. 𝐔 = triu(𝐀) extract the upper triangle from A

3. 𝐁 = 𝐋⊕.⊗ 𝐔 multiply matrices L and U

4. 𝐂 = 𝐁⊗𝐀 element-wise multiplication

5. 𝒕 = σ𝐂 /𝟐 sum the values in C and divide by 2

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.3712&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.3712&rep=rep1&type=pdf

𝐀
1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1

𝐋

 1

 1 1 1

 1

 1 1 1

 1 1 1 1

𝐔
 1 1

 1 1 1

 1 1 1

 1 1

 1 1

𝐁

1 1

1 3 1 1 2

1 1 1

1 3 3

2 1 3 4

COHEN’S ALGORITHM

⊗

𝒕 = σ𝐂/𝟐
𝐂

1

1 1 2

1

1

2 1

𝐋

 1

 1 1 1

 1

 1 1 1

 1 1 1 1

𝐔
 1 1

 1 1 1

 1 1 1

 1 1

 1 1

COHEN’S ALGORITHM: MASKING

𝐂

1

1 1 2

1

1

2 1

𝐂 𝐀 = 𝐋⊕.⊗ 𝐔

𝒕 = σ𝐂/𝟐

Graph algorithms in GraphBLAS

Triangle count / Sandia algorithm

SANDIA ALGORITHM

M.M. Wolf et al. (Sandia National Laboratories):
Fast linear algebra-based triangle counting with KokkosKernels, HPEC 2017

Input: adjacency matrix 𝐀

Output: triangle count 𝒕

Workspace: matrices 𝐋, 𝐔, 𝐁, 𝐂

1. 𝐋 = tril 𝐀 extract the lower triangle from A

2. 𝐂 𝐋 = 𝐋⊕.⊗ 𝐋 multiply matrices L and L using mask L

3. 𝒕 = σ𝐂 sum the values in C

https://www.osti.gov/servlets/purl/1506222
https://www.osti.gov/servlets/purl/1506222

𝐋

 1

 1 1 1

 1

 1 1 1

 1 1 1 1

𝐋

 1

 1 1 1

 1

 1 1 1

 1 1 1 1

SANDIA ALGORITHM

𝐂

1

1

2 1

𝐂 𝐋 = 𝐋⊕.⊗ 𝐋

𝒕 = σ𝐂

Graph algorithms in GraphBLAS

Triangle count / CMU algorithm

CMU ALGORITHM

 Iterates on the vertices of the graph,
extracts corresponding submatrices and
computes 𝒕 = 𝒕 + 𝑎10

⊤ ⊕.⊗ 𝐴20 ⊕.⊗ 𝑎12
 Tradeoffs:

o does not require mxm, only vxm and mxv

o slower than mxm-based algorithms

 The formula is derived using the matrix trace tr 𝐀 =
σ𝑖=0
𝑛−1 𝐀𝑖𝑖 and its invariant property under cyclic permutation,

e.g. tr 𝐀𝐁𝐂 = tr 𝐁𝐂𝐀 = tr 𝐂𝐀𝐁 . See the paper for details.

T.M. Low et al. (Carnegie Mellon University):
First look: linear algebra-based triangle counting without matrix multiplication, HPEC 2017

𝐀 𝑖

𝐀00 𝐚01 𝐀20
⊤

𝑖 𝐚01
⊤ 0 𝐚21

⊤

𝐀20 𝐚21 𝐀22

https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf
https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf

CMU ALGORITHM: PSEUDOCODE

T.M. Low et al. (Carnegie Mellon University):
First look: linear algebra-based triangle counting without matrix multiplication, HPEC 2017

Input: adjacency matrix 𝐀

Output: triangle count 𝒕

Workspace: matrix 𝐀20, 𝐚10, 𝐚12
⊤ , 𝐂

1. for 𝑖 = 2 to 𝑛 − 1

2. 𝐀20 = 𝐀 𝑖 + 1: 𝑛, 0: 𝑖 − 1

3. 𝐚10 = 𝐀 0: 𝑖 − 1, 𝑖

4. 𝐚12 = 𝐀 𝑖, 𝑖 + 1: 𝑛

5. 𝒕 = 𝒕 + 𝑎10
⊤ ⊕.⊗ 𝐴20 ⊕.⊗ 𝑎12

𝐀 𝑖

𝐀00 𝐚01 𝐀20
⊤

𝑖 𝐚01
⊤ 0 𝐚21

⊤

𝐀20 𝐚21 𝐀22

https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf
https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf

PROVABLY CORRECT ALGORITHMS

M. Lee, T.M. Low (Carnegie Mellon University):
A family of provably correct algorithms for exact triangle counting,
CORRECTNESS @ SC 2017

The “CMU algorithm”
belongs to a family of
algorithms which can
be derived using the
“FLAME approach”.

There are 8 similar
algorithms in total,
the one presented
here is Algorithm 2.

Source
of the
figure

https://correctness-workshop.github.io/2017/papers/low.pdf
https://correctness-workshop.github.io/2017/papers/low.pdf

Graph algorithms in GraphBLAS

Node-wise triangle count

NODE-WISE TRIANGLE COUNT

Triangle – Def 1: a set of three mutually adjacent nodes.

Def 2: a three-length closed path.

Usages:

 Global clustering coefficient

 Local clustering coefficient

 Finding communities

𝑣

2

8

4

6

6

2

2

GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018

TC: ELEMENT-WISE MULTIPLICATION

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

𝐀⊕.⊗ 𝐀 is still very dense.

2

6

4

8

2

2

6

2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

𝐓𝐑𝐈

⊗ 𝐀

TC: ELEMENT-WISE MULTIPLICATION

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6

2

8

4

6

6

2

2

𝐭𝐫𝐢

⊕𝑗 ⋯

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

Masking limits where the
operation is computed.
Here, we use 𝐀 as a mask
for 𝐀⊕.⊗ 𝐀.

TC: ALGORITHM

Input: adjacency matrix 𝐀

Output: vector 𝐭𝐫𝐢

Workspace: matrix 𝐓𝐑𝐈

1. 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀 compute the triangle count matrix

2. 𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 compute the triangle count vector

Optimization: use 𝐋, the lower triangular part of 𝐀 to avoid duplicates.
𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

Worst-case optimal joins: There are deep theoretical connections between masked matrix multiplication and
relational joins. It has been proven in 2013 that for the triangle query, binary joins always provide suboptimal
runtime, which gave rise to new research on the family of worst-case optimal multi-way joins algorithms.

Graph algorithms in GraphBLAS

k-truss

K-TRUSS

 Definition: the k-truss is a subset of the graph with the
same number of vertices, where each edge appears in at
least 𝑘 − 2 triangles in the original graph.

K-TRUSS ALGORITHM

 Input: adjacency matrix 𝐀, scalar 𝑘

 Output: 𝑘-truss adjacency matrix 𝐂

 Helper: 𝑓 𝑥, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑥 ≥ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

1. 𝐂 = 𝐀

2. for 𝑖 = 1 to 𝑛 − 1

3. 𝐂 𝐂 = 𝐂⊕.∧ 𝐂 use the “plus-and” semiring

4. 𝐂 = 𝑓 𝐂, 𝑘 − 2 drop entries in 𝐂 less than 𝑘 − 2

5. terminate if the number of nonzero values in 𝐂 did not change

T.A. Davis: Graph algorithms via SuiteSparse:GraphBLAS: triangle counting and k-truss, HPEC 2018

http://faculty.cse.tamu.edu/davis/GraphBLAS_files/Davis_HPEC18.pdf
http://faculty.cse.tamu.edu/davis/GraphBLAS_files/Davis_HPEC18.pdf

Graph algorithms in GraphBLAS

Community detection using label propagation

CDLP: COMMUNITY DETECTION USING LABEL PROPAGATION

Goal: assign a label to each vertex representing the community it
belongs to. The algorithm (originally published in network science)
is slightly altered to ensure deterministic execution. Initially:

𝐿0 𝑣 = 𝑣

In the 𝑘th iteration:
𝐿𝑘 𝑣 = min argmax𝑙 𝑢 ∈ 𝑁 𝑣 | 𝐿𝑘−1 𝑢 = 𝑙 ,

where 𝑁 𝑣 is the set of neighbours of 𝑣.

Run for 𝑡 iterations or until reaching a fixed point.

U.N. Raghavan, R. Albert, S. Kumara: Near linear time algorithm to
detect community structures in large-scale networks, Phys. Rev. E, 2007

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.036106
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.036106

IDEA: CAPTURE CDLP IN PURE GRAPHBLAS

 Define a semiring that operates over occurrence vectors

 ⊕ operator: combines two occurrence vectors

o 6 → 1, 9 → 1 ⊕ 6 → 1, 7 → 2 = 6 → 2, 7 → 2, 9 → 1

 Convert each element in a row to an occurrence vector

o 6 → 1 , 6 → 1 , 7 → 1 , 7 → 1 , 9 → 1

 Reduce each row into a single occurrence vector:

o 6 → 2, 7 → 2, 9 → 1

 Select the min. mode element from the occurrence vector

o 6

 Work on paper, but occurrence vectors need dynamic
memory allocation, which leads to very poor performance

CDLP IN LINEAR ALGEBRA

 Extract each row from 𝐅

o Easy if the matrix is stored in CSR format

 Select the minimum mode value in each row

o Sort elements using parallel merge sort

o Pick the min value that has the longest run (done in a single pass)

 Sort each row r

 Use the sorted list to compute mode(r)

CDLP EXAMPLE

1

4

3

2

7

6

5

𝐀

diag 𝐥𝐚𝐛
 1

 2

 3

 4

 5

 6

 7

2 4

1 5 7

4 6 7

1 3 7

2 6 7

3 5

2 3 4 5

 Initially, 𝐥𝐚𝐛 = 1 2…𝑛

 Propagate labels to create
a “frequency matrix”:
𝐅 = 𝐀 any.sel2nd diag(𝐥𝐚𝐛)

CDLP EXAMPLE

1

4

3

2

7

6

5

𝐀

diag 𝐥𝐚𝐛
 1

 2

 3

 4

 5

 6

 7

2 4

1 5 7

4 6 7

1 3 7

2 6 7

3 5

2 3 4 5

2

1

4

1

2

3

2

min.
mode

𝐥𝐚𝐛′

step: 1

CDLP EXAMPLE

2

1

4

1

2

3

2

𝐀

diag 𝐥𝐚𝐛
 2

 1

 4

 1

 2

 3

 2

1 1

2 2 2

1 3 2

2 4 2

1 3 2

4 2

1 4 1 2

1

2

1

2

1

2

1

min.
mode

𝐥𝐚𝐛′

step: 2

CDLP EXAMPLE

1

2

1

2

1

2

1

𝐀

diag 𝐥𝐚𝐛
 1

 2

 1

 2

 1

 2

 1

2 2

1 1 1

2 2 1

1 1 1

2 2 1

1 1

2 1 2 1

2

1

2

1

2

1

1

min.
mode

𝐥𝐚𝐛′

step: 3

CDLP EXAMPLE

2

1

2

1

1

1

2

𝐀

diag 𝐥𝐚𝐛
 2

 1

 2

 1

 2

 1

 1

1 1

2 2 1

1 1 1

2 2 1

1 1 1

2 2

1 2 1 2

1

2

1

2

1

2

1

min.
mode

𝐥𝐚𝐛′

step: 4
same result as in step 2

CDLP: ALGORITHM

Input: adjacency matrix 𝐀, #vertices 𝑛, #iterations 𝑡

Output: vector 𝐥𝐚𝐛

Workspace: matrix F, vector 𝐫

1. 𝐥𝐚𝐛 = 1 2…𝑛

2. for 𝑘 = 1 to 𝑡

3. 𝐅 = 𝐀 any.sel2nd diag 𝐥𝐚𝐛

4. for 𝑖 = 1 to 𝑛

5. 𝐫 = 𝐅 𝑖, :

6. sort 𝐫

7. 𝐋 𝑖 = select_min_mode 𝐫

Can be batched and parallelized

CDLP: ALGORITHM

Input: adjacency matrix 𝐀, #vertices 𝑛, #iterations 𝑡

Output: vector 𝐥𝐚𝐛

Workspace: matrix F, vector 𝐫, array of row indices 𝐈, array of values 𝐗

1. 𝐥𝐚𝐛 = 1 2…𝑛

2. for 𝑘 = 1 to 𝑡

3. 𝐅 = 𝐀 any.sel2nd diag 𝐥𝐚𝐛

4. 𝐈, _, 𝐗 = extract_tuples(𝐅)

5. merge_sort_pairs 𝐈, 𝐗

6. 𝐥𝐚𝐛 = for each row in 𝐈, select min mode value from 𝐗

CDLP ON DIRECTED GRAPHS

For directed graphs, we compute the labels 𝐿𝑘 𝑣 as:

min argmax𝑙 𝑢 ∈ 𝑁in 𝑣 | 𝐿𝑘−1 𝑢 = 𝑙 + 𝑢 ∈ 𝑁out 𝑣 | 𝐿𝑘−1 𝑢 = 𝑙

 In linear algebra, this can be expressed with two matrices:

o 𝐅in = 𝐀 any. sel2nd diag 𝐥𝐚𝐛

o 𝐅out = 𝐀⊤ any. sel2nd diag 𝐥𝐚𝐛

 Simultaneously iterate over rows 𝐫in of 𝐅in and 𝐫out of 𝐅out
 For each row pair, sort 𝐫in ∪ 𝐫out and select the minimum mode value

 Batching also works:

o 𝐈in, _, 𝐗in = extract_tuples 𝐅in
o 𝐈out, _, 𝐗out = extract_tuples 𝐅out

merge_sort_pairs 𝐈in ∪ 𝐈out, 𝐗in ∪ 𝐗out

Graph algorithms in GraphBLAS

The importance of masking

THE IMPORTANCE OF MASKING

Q: Is masking absolutely necessary?

A: Yes, it can reduce the complexity of some algorithms.
We demonstrate this with two examples.

𝐀⊕.⊗ 𝐀

𝐀

 1 1 1 1

 1

 1

 1

 1

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝐀

1 1 1 1

1

1

1

1

𝐀⊕.⊗ 𝐀⊗𝐀𝐀

A simple corner case is
the star graph: there
are 𝑛 − 1 2 wedges but
none of them close into
triangles.

We do quadratic work
while it’s clear that
there are no triangles in
the graph (it’s a tree).

#1

𝐀

 1 1 1 1

 1

 1

 1

 1

𝐀

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

𝐀⊕.⊗ 𝐀

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

4 3 1 1 1

3 4 1 1 1

1 1 2 2 2

1 1 2 2 2

1 1 2 2 2

1 1 1 1

1 1 1 1

1 1

1 1

1 1

3 1 1 1

3 1 1 1

1 1

1 1

1 1

𝐀⊕.⊗ 𝐀⊗𝐀𝐀

A full bipartite graph 𝐾2,3
with the vertices in the top
partition connected.

A bipartite graph only has
cycles of even length, so
it’s easy to see that all
triangles will contain the
two vertices in the top
partition. Still, 𝐀⊕.⊗ 𝐀
enumerates all wedges
starting and ending in the
bottom partition, thus
performing a lot of
unnecessary work.

#2

𝐀 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

#2
Masking avoids the
materialization of large
interim data sets by
ensuring that we only
enumerate wedges whose
endpoints are already
connected.

6

6

2

2

2

𝐭𝐫𝐢

3 1 1 1

3 1 1 1

1 1

1 1

1 1

⊕𝑗 𝐓𝐑𝐈 : , 𝑗

𝐀

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

Graph algorithms in GraphBLAS

Summary and other algorithms

SUMMARY OF THE ALGORITHMS DISCUSSED

Algo. Features demonstrated

BFS lor-land and min-sel1st semirings, masked SpMV

SSSP min-plus semiring

PR real semiring, row-wise reduce

LCC apply operation, masked matrix-market multiplication

GRAPH ALGORITHMS & GRAPHBLAS PRIMITIVES

Misc.
Connectivity, subgraph

matching, traversal (BFS),
max. independent set

Centrality
PageRank,

betweenness
centrality

Graph clustering
Markov cluster,
peer pressure,
spectral, local

Shortest paths
All-pairs shortest,

single-source,
temporal

GraphBLAS primitives in increasing arithmetic intensity

Based on the figure in A. Buluç:
Graph algorithms, computational motifs, and GraphBLAS, ECP Meeting 2018

SpMSpV
Sparse Matrix
Sparse Vector

SpMM
Sparse Matrix

Multiple Dense Vectors

SpMV
Sparse Matrix
Dense Vector

SpGEMM
Sparse Matrix
Sparse Matrix

SpDM3

Sparse-Dense
Matrix-Matrix M.

https://people.eecs.berkeley.edu/~aydin/ECP_GraphBLAS_Buluc.pdf
https://people.eecs.berkeley.edu/~aydin/ECP_GraphBLAS_Buluc.pdf

OTHER ALGORITHMS IN GRAPHBLAS

Betweenness centrality: Brandes’ algorithm

A. Buluç et al.: Design of the GraphBLAS C API, GABB@IPDPS 2017

T.A. Davis: Graph algorithms via SuiteSparse:GraphBLAS: triangle counting and k-truss, HPEC 2018

k-truss: a subset of the graph with the same number of vertices, where
each edge appears in at least 𝑘 − 2 triangles in the original graph.

T.A. Davis et al.: Write Quick, Run Fast: Sparse Deep
Neural Network in 20 Minutes of Development Time
via SuiteSparse:GraphBLAS, HPEC 2019

Sparse DNNs: represent sparse deep neural networks as graphs

Maximal independent set: Luby’s randomized algorithm
T.A. Davis: Algorithm 1000: SuiteSparse:GraphBLAS: graph algorithms in the language of sparse
linear algebra, ACM TOMS, 2019

J. Kepner et al.: Enabling Massive Deep Neural
Networks with the GraphBLAS, HPEC 2017

http://faculty.cse.tamu.edu/davis/GraphBLAS_files/Davis_HPEC18.pdf
http://faculty.cse.tamu.edu/davis/GraphBLAS_files/Davis_HPEC18.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
https://arxiv.org/pdf/1708.02937.pdf
https://arxiv.org/pdf/1708.02937.pdf

Graph processing in relational algebra

𝒊 𝒋 𝒌

1 2 3

1 2 6

RELATIONAL ALGEBRA ON GRAPHS

Natural join: 𝐴 ⋈ 𝐵

Semijoin: 𝐴 ⋉ 𝐵

Antijoin: 𝐴 ഥ⋉ 𝐵

Left outer join: 𝐴⟕𝐵

1 3

4

2

5 6

:A

:A

:B

:B

𝒊 𝒋

1 2

𝒊 𝒋

4 5

1 3

4

2

5 6

:A

:A

:B

:B

1 3

4

2

5 6

:A

:A

:B

:B

1 3

4

2

5 6

:A

:A

:B

:B

1 32

6

:A :B

:B

1 2:A

4 5
:A

1 3

4

2

5 6

:A

:A

:B

:B

𝒊 𝒋 𝒌

1 2 3

1 2 6

4 5 null

A semijoin keeps edges from 𝐴
with a connecting edge in 𝐵.

A left outer join keeps all edges from 𝐴
with or without a connecting edge in 𝐵.

A natural join connects edges from 𝐴
with an edge in 𝐵.

An antijoin keeps edges from 𝐴
without a connecting edge in 𝐵.

TRIANGLE QUERY
Given relations 𝐴 𝑖, 𝑗 , 𝐵 𝑗, 𝑘 , 𝐶 𝑖, 𝑘
triangles can be enumerated with:

𝐴 ⋈ 𝐵 ⋈ 𝐶

𝐶

𝐵𝐴

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵 𝐶

𝒊 𝒋 𝒌

1 4 7

1 4 8

1 4 9

2 4 7

2 4 8

2 4 9

3 4 7

3 4 8

3 4 9

1 5 7

1 6 7

𝐴 ⋈ 𝐵

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

wedges that
do not close
into a triangle

*Edges are stored in one direction: 𝑅 1 < 𝑅 2

COMPLEXITY OF THE TRIANGLE QUERY

For 𝑚 edges, the AGM-bound of the triangle query is 𝒪 𝑚3/2

Theorem #1:

Any binary join plan for the triangle query takes Ω 𝑚2 time.

To mitigate this, worst-case optimal join (WCOJ) algorithm use
multi-way joins such as ⋈ (𝐴, 𝐵, 𝐶).

Theorem #2:

The worst-case complexity of the generic join algorithm (a
WCOJ algorithm) ≤ AGM bound.

A. Atserias, M. Grohe, D. Marx,
Size Bounds and Query Plans for Relational Joins,
FOCS 2008

H.Q. Ngo et al.: Skew strikes back:
New developments in the theory of join
algorithms, SIGMOD Record 2013

https://www.cs.upc.edu/~atserias/papers/joins/queries-revised.pdf
https://www.cs.upc.edu/~atserias/papers/joins/queries-revised.pdf
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964

3 1 1

1 1 1

1 1 1

3 1 1

1

1

 1 1 1

 1

 1

 1 1 1

 1

 1

1 1 1

1

1

𝐀⊕.⊗ 𝐁 𝐀⊕.⊗ 𝐁⊗ 𝐂𝐀

𝐀

𝐁 𝐂

𝐂

𝐁𝐀

*We only use
the lower
triangular part. 𝐭𝐫𝐢

5

1

1

3 1 1

1

1

𝐀 TRI 𝐂 = 𝐀⊕.⊗ 𝐁

𝐂

𝐁𝐀

 1 1 1

 1

 1

 1 1 1

 1

 1

𝐀

𝐁

*We only use
the lower
triangular part.

𝐭𝐫𝐢

⊕𝑗 ⋯

5

1

1

MASKING IN RELATIONAL ALGEBRA

Vertex-wise triangle count in linear algebra:
TRI 𝐂 = 𝐀⊕.⊗ 𝐁

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

Notice that in relational algebra, given 𝐴 𝑖, 𝑗 , 𝐵 𝑗, 𝑘 , 𝐶 𝑖, 𝑘 :

𝐴 ⋈ 𝐵 ⋈ 𝐶 ≡ 𝐴 ⋈ 𝐵 ⋉ 𝐶

𝐴 ⋈ 𝐵 ⋈ 𝐶 ≡ 𝐵 ⋈ 𝐶 ⋈ 𝐴 ≡ 𝐵 ⋈ 𝐶 ⋉ 𝐴

𝐴 ⋈ 𝐵 ⋈ 𝐶 ≡ 𝐴 ⋈ 𝐶 ⋈ 𝐵 ≡ 𝐴 ⋈ 𝐶 ⋉ 𝐵

Where the semijoin operator ⋉ is defined as:
𝑅 ⋉ 𝑆 = 𝜋schema 𝑅 𝑅 ⋈ 𝑆 = 𝑅 ⋈ 𝜋schema 𝑅 ∩schema 𝑆 𝑆

MASKING IN RELATIONAL ALGEBRA

Given relational schemas 𝐴 𝑖, 𝑗 , 𝐵 𝑗, 𝑘 , 𝐶 𝑖, 𝑘 and expression:
𝐴 ⋈ 𝐵 ⋈ 𝐶 ≡ 𝐴 ⋈ 𝐵 ⋉ 𝐶

The “masking” technique cannot be translated to relational
algebra as a single operation – we have to use an outside loop
to express it. Using relation 𝑇 𝑖, 𝑘 :

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝜋𝑖,𝑘 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

3. 𝑡𝑟𝑖 = 𝛾𝑖,count 𝑘 →𝑡𝑟𝑖𝐶𝑜𝑢𝑛𝑡 𝑇𝑅𝐼

Cf. TRI 𝐂 = 𝐀⊕.⊗ 𝐁, 𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

𝒊 𝒕𝒓𝒊𝑪𝒐𝒖𝒏𝒕

1 5

2 1

3 1

TRIANGLE ENUMERATION IN RELATIONAL ALG.

Relational algebra also allows triangle enumeration.

Given 𝐴 𝑖, 𝑗 , 𝐵 𝑗, 𝑘 , 𝐶 𝑖, 𝑘 , instead of the previous expression:

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝜋𝑖,𝑘 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

3. 𝑡𝑟𝑖 = 𝛾𝑖,count 𝑘 →𝑡𝑟𝑖𝐶𝑜𝑢𝑛𝑡 𝑇𝑅𝐼

Compute:

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

TRIANGLE ENUMERATION IN RELATIONAL ALG.

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵𝐶

𝐴 ⋉ 𝑐 𝐵 ⋉ 𝑐

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

TRIANGLE ENUMERATION IN RELATIONAL ALG.

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵𝐶

𝐴 ⋉ 𝑐 𝐵 ⋉ 𝑐

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

TRIANGLE ENUMERATION IN RELATIONAL ALG.

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵𝐶

𝐴 ⋉ 𝑐 𝐵 ⋉ 𝑐

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

TRIANGLE ENUMERATION IN RELATIONAL ALG.

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵𝐶

𝐴 ⋉ 𝑐 𝐵 ⋉ 𝑐

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

TRIANGLE ENUMERATION IN RELATIONAL ALG.

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵𝐶

𝐴 ⋉ 𝑐 𝐵 ⋉ 𝑐

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

TRIANGLE ENUMERATION IN RELATIONAL ALG.

1. for all 𝑐 ∈ 𝐶 do

2. 𝑇𝑅𝐼 = 𝑇𝑅𝐼 ∪ 𝐴 ⋉ 𝑐 ⋈ 𝐵 ⋉ 𝑐

𝒊 𝒋

1 4

2 4

3 4

1 5

1 6

𝒋 𝒌

4 7

4 8

4 9

5 7

6 7

𝒊 𝒌

1 7

1 8

1 9

2 7

3 7

𝐴 𝐵𝐶

𝐴 ⋉ 𝑐 𝐵 ⋉ 𝑐

𝒊 𝒋 𝒌

1 4 7

1 5 7

1 6 7

1 4 8

1 4 9

2 4 7

3 4 7

𝐴 ⋈ 𝐵 ⋈ 𝐶

H.Q. Ngo et al.: Skew strikes back:
New developments in the theory of join
algorithms, SIGMOD Record 2013

Using semijoin pushdown on each tuple, we
computed 𝐴 ⋈ 𝐵 ⋈ 𝐶 without enumerating
a quadratic-size interim relation. However,
for efficient implementations, relations
should also be sorted (see ref. for details).

https://arxiv.org/pdf/1310.3314.pdf
https://arxiv.org/pdf/1310.3314.pdf

TRIANGLE ENUMERATION IN LINEAR ALGEBRA

M.M. Wolf et al. A task-based linear
algebra building blocks approach for
scalable graph analytics, HPEC 2015

(Note that this work is yet to be ported to GraphBLAS.)

Triangle enumeration is possible by using triples as matrix
elements and overloading “⊕.⊗” so that multiplying the
adjacency matrix 𝐀 with the incidence matrix 𝐁 results in 𝐂:

𝐂 𝑖, 𝑗 = 𝑖, 𝑥, 𝑦 iff 𝐀 𝑖, 𝑥 = 𝐀 𝑖, 𝑦 = 1 and 𝐁 𝑥, 𝑗 = 𝐁 𝑦, 𝑗 = 1

https://www.osti.gov/biblio/1531050
https://www.osti.gov/biblio/1531050

MATRIX MULTIPLICATION IN RELATIONAL ALG.

set ⨁ ⨂ 0

set relations 𝑅 ⊆ 𝐷1 ×⋯× 𝐷𝑘 ∪ ⋈ empty rel.

matrix relations 𝑅 ⊆ 𝐷1 × 𝐷2 ∪ ⊠ empty rel.

Observations:

 a binary relation is analogous to a Boolean sparse matrix stored in coordinate list (COO) format

 a matrix multiplication is analogous to an equijoin on a binary relation that uses a single join
attribute, and discards it after performing the join.

Definition: Given two binary relations 𝑅, 𝑆 with a common attribute 𝑥 , we define “multjoin” as :

𝑅 ⊠ 𝑆 = 𝜋𝑅∪𝑆∖ 𝑥 𝑅 ⋈
𝑅.𝑥=𝑆.𝑥

𝑆

Example: 𝒊 𝒋

1 3

1 4

2 4

𝒋 𝒌

4 6

4 7

5 7

𝐴 𝐵 𝒊 𝒌

1 6

1 7

2 6

2 7

𝐴⊠ 𝐵

MM VS. MULTJOIN: REACHABILITY

Matrices: Relations:
𝐀 ∈ 𝔹𝑚×𝑛, 𝐁 ∈ 𝔹𝑛×𝑜, 𝐂 ∈ 𝔹𝑜×𝑝 𝐴 𝑖, 𝑗 , 𝐵 𝑗, 𝑘 , 𝐶(𝑘, 𝑙)

For 𝐀 ∨.∧ 𝐁: 𝐀𝐁 𝑖𝑘 = ∨
𝑘

𝐀𝑖𝑗 ∧ 𝐁𝑗𝑘 𝐴⊠ 𝐵 sch: (𝑖, 𝑘)

For 𝐀 ∨.∧ 𝐁 ∨.∧ 𝐂: 𝐴⊠ 𝐵⊠ 𝐶 sch: (𝑖, 𝑙)

𝐀𝐁𝐂 𝑖𝑙 =
= ∨

𝑘
𝐀𝐁 𝑖𝑘 ∧ 𝐂𝑘𝑙

= ∨
𝑘

∨
𝑗
𝐀𝑖𝑗 ∧ 𝐁𝑗𝑘 ∧ 𝐂𝑘𝑙

= ∨
𝑘

∨
𝑗
𝐀𝑖𝑗 ∧ 𝐁𝑗𝑘 ∧ 𝐂𝑘𝑙

𝐀 → 𝑗

𝑖

𝐀𝐁

𝐁 𝑘

↓ 𝑗

𝐀𝐁𝐂

𝐂 𝑙

↓ 𝑘

𝐀𝐁 → 𝑘

𝑖

MM VS. JOIN: COUNTING PATHS

Matrices:

𝐀 ∈ ℕ𝑚×𝑛, 𝐁 ∈ ℕ𝑛×𝑜, 𝐂 ∈ ℕ𝑜×𝑝

𝐀𝐁 𝑖𝑘 = Σ
𝑗
𝐀𝑖𝑗 ⊗𝐁𝑗𝑘

𝐀𝐁𝐂 𝑖𝑙 = Σ
𝑘
Σ
𝑗
𝐀𝑖𝑗 ⊗𝐁𝑗𝑘 ⊗𝐂𝑘𝑙

= Σ
𝑘
Σ
𝑗
𝐀𝑖𝑗 ⊗𝐁𝑗𝑘 ⊗𝐂𝑘𝑙

Relations:
𝐴 𝑖, 𝑗, 𝑣𝑎 , 𝐵 𝑗, 𝑘, 𝑣𝑏 , 𝐶(𝑘, 𝑙, 𝑣𝑐)

𝛾sum(𝐴𝑣𝑎⋅𝐵𝑣𝑏)
𝐴.𝑖,𝐵.𝑘 𝐴 ⋈ 𝐵

𝛾sum(𝐴𝑣𝑎⋅𝐵𝑣𝑏⋅𝐶𝑣𝑐)
𝐴.𝑖,𝐶.𝑙 𝐴 ⋈ 𝐵 ⋈ 𝐶

Enumerating triangles requires applying 𝜎𝐴.𝑖=𝐶.𝑙 …

MATRIX MULTIPLICATION IN SQL: PATHS

select A.i, B.k, sum(A.va * B.vb)
from A, B
where A.j = B.j
group by A.i, B.k;

𝐀𝐁 𝑖𝑘 = Σ
𝑗
𝐀𝑖𝑗 ⊗𝐁𝑗𝑘 ⇒ 𝛾Σ(𝐴𝑣𝑎⋅𝐵𝑣𝑏)

𝐴.𝑖,𝐵.𝑘 𝐴 ⋈ 𝐵

𝐀𝐁𝐂 𝑖𝑙 = Σ
𝑘
Σ
𝑗
𝐀𝑖𝑗 ⊗𝐁𝑗𝑘 ⊗𝐂𝑘𝑙 ⇒ 𝛾Σ(𝐴𝑣𝑎⋅𝐵𝑣𝑏⋅𝐶𝑣𝑐)

𝐴.𝑖,𝐶.𝑙 𝐴 ⋈ 𝐵 ⋈ 𝐶

select A.i, C.l, sum(A.va * B.vb * C.vc)
from A, B, C
where A.j = B.j

and B.k = C.k
group by A.i, C.l;

MATRIX MULTIPLICATION IN SQL: TRIANGLES

𝐀𝐁𝐂 𝑖𝑖 = Σ
𝑘
Σ
𝑗
𝐀𝑖𝑗 ⊗𝐁𝑗𝑘 ⊗𝐂𝑘𝑙 ⇒ 𝛾Σ(𝐴𝑣𝑎⋅𝐵𝑣𝑏⋅𝐶𝑣𝑐)

𝐴.𝑖,𝐶.𝑙 𝜎𝐴.𝑖=𝐶.𝑙 𝐴 ⋈ 𝐵 ⋈ 𝐶

select A.i, C.l, sum(A.va * B.vb * C.vc)
from A, B, C
where A.j = B.j

and B.k = C.k
and A.i = C.l

group by A.i, C.l;

Relations 𝐴 𝑖, 𝑗, 𝑣𝑎 , 𝐵 𝑗, 𝑘, 𝑣𝑏 , 𝐶(𝑘, 𝑙, 𝑣𝑐)

Given relations 𝐴 𝑖, 𝑗, 𝑣𝑎 , 𝐵 𝑗, 𝑘, 𝑣𝑏 , 𝐶(𝑖, 𝑘, 𝑣𝑐), we can simply use two
natural joins: 𝐴 ⋈ 𝐵 ⋈ 𝐶.

GraphBLAS and SuiteSparse internals

GRAPHBLAS C API

 “A crucial piece of the GraphBLAS effort is to translate the
mathematical specification to an API that

o is faithful to the mathematics as much as possible, and

o enables efficient implementations on modern hardware.”

mxm(Matrix *C, Matrix M, BinaryOp accum, Semiring op, Matrix A, Matrix B, Descriptor desc)

𝐂 ¬𝐌 ⊙= ⊕.⊗ 𝐀⊤, 𝐁⊤

A. Buluç et al.: Design of the GraphBLAS C API, GABB@IPDPS 2017

GRAPHBLAS OBJECTS

 GraphBLAS objects are opaque: the matrix representation
can be adjusted to suit the data distribution, hardware, etc.

 The typical representations are compressed formats are:

o CSR: Compressed Sparse Row (also known as CRS)

o CSC: Compressed Sparse Column (also known as CCS)

𝐀

 .3 .8

 .1 .7

 .5

 .2 .4

 .1

 .5

 .1 .5 .9

col index 2 4 5 7 6 1 3 6 3 3 4 5

value .3 .8 .1 .7 .5 .2 .4 .1 .5 .1 .5 .9

row ptr 1 3 5 6 8 9 10 13

CSR representation of 𝐀:

SUITESPARSE:GRAPHBLAS INTERNALS

 Authored by Prof. Tim Davis at Texas A&M University,
based on his SuiteSparse library (used in MATLAB).

 Design decisions, algorithms and data structures are
discussed in the TOMS paper and in the User Guide.

 Extensions: methods and types prefixed with GxB.

 Sophisticated load balancer for multi-threaded execution.

 GPU implementation is a work-in-progress.

T.A. Davis: Algorithm 1000: SuiteSparse:GraphBLAS:
graph algorithms in the language of sparse linear
algebra, ACM TOMS, 2019

T.A. Davis: SuiteSparse:GraphBLAS: graph
algorithms via sparse matrix operations
on semirings, Sparse Days 2017

http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
https://cerfacs.fr/wp-content/uploads/2017/09/S02E04-Davis.pdf
https://cerfacs.fr/wp-content/uploads/2017/09/S02E04-Davis.pdf

Graph benchmarks

TPC: TRANSACTION PROCESSING PERFORMANCE COUNCIL

Standard specifications for
benchmarking certain
aspects of relational DBs

http://www.tpc.org/
http://www.tpc.org/

LDBC: LINKED DATA BENCHMARK COUNCIL

 A non-profit academic & industrial organization

 Dedicated to define standard benchmarks for graph databases

2012 2013 2014 2015 2016 2017 2018 2019 2020

VLDB 2016, Iosup et al.

SIGMOD 2015
Erling et al.

GRADES@SIGMOD 2018
Szárnyas et al.

https://dl.acm.org/citation.cfm?id=3007270
https://dl.acm.org/citation.cfm?id=3007270
https://dl.acm.org/citation.cfm?id=2742786
https://dl.acm.org/citation.cfm?id=2742786
http://real.mtak.hu/81011/1/ldbc_bi_grades_u.pdf
http://real.mtak.hu/81011/1/ldbc_bi_grades_u.pdf

OLAP:

SNB BI

portion of the graph accessed

e
x

p
e

ct
e

d
e

x
e

cu
ti

o
n

ti
m

e

OLTP:

SNB Int.

GRAPH PROCESSING CATEGORIES IN LDBC

Graphalytics

graph queries: structure, types, and properties

graph analytics:
structure only

≈ 𝒪 𝑑 ⋅ log 𝑛

≈ 𝒪 𝑛 log 𝑛

≈ 𝒪 𝑛 + 𝑒

PRELIMINARY RESULTS WITH SUITESPARSE:GB

Twitter
50M nodes,

2B edges

loading often takes
longer than processing

graph500-26
33M nodes,
1.1B edges

d-8.8-zf
168M nodes,
413M edges

d-8.6-fb
6M nodes,

422M edges

Ubuntu Server, 512 GB RAM,
64 CPU cores, 128 threads

THE GAP BENCHMARK SUITE

S. Beamer, K. Asanovic, D. Patterson:
The GAP Benchmark Suite, arXiv, 2017

 Part of the Berkeley Graph Algorithm Platform project

 Same authors as the direction-optimizing BFS algorithm

 Six algorithms: BFS, SSSP, PageRank, connected
components, betweenness centrality, triangle count

 Five data sets: Twitter, Web, Road, Kron, Urand

o 24M to 134M vertices, 68M to 2.1B edges

oWeighted/unweighted, directed/undirected

 Very efficient baseline implementation in C++

 Maintained on arXiv – v1: 2015, …, v4: 2017

gap.cs.berkeley.edu/benchmark.html

https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/1508.03619
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html

Further reading and libraries

RESOURCES

Presentations and tutorials for learning GraphBLAS along
with a link to a collection of pointers.

S. McMillan and T.G. Mattson:
A Hands-On Introduction to the GraphBLAS, Tutorial at HPEC since 2018

J.R. Gilbert:
GraphBLAS: Graph Algorithms in the Language of Linear Algebra, Seminar talk since 2014

A. Buluç:
GraphBLAS: Concepts, algorithms, and applications, Scheduling Workshop, 2019

List of GraphBLAS-related books, papers, presentations, posters, software, etc.
szarnyasg/graphblas-pointers

M. Kumar, J.E. Moreira, P. Pattnaik:
GraphBLAS: Handling performance concerns in large graph analytics,
Computing Frontiers 2018

https://github.com/tgmattso/GraphBLAS
https://github.com/tgmattso/GraphBLAS
https://sites.cs.ucsb.edu/~gilbert/talks/Gilbert-27Jun2019.pdf
https://sites.cs.ucsb.edu/~gilbert/talks/Gilbert-27Jun2019.pdf
https://scheduling2019.sciencesconf.org/file/566318
https://scheduling2019.sciencesconf.org/file/566318
https://github.com/szarnyasg/graphblas-pointers
https://github.com/szarnyasg/graphblas-pointers
https://github.com/szarnyasg/graphblas-pointers
https://www.ibm.com/university/power/images/CF2018.pdf
https://www.ibm.com/university/power/images/CF2018.pdf

THE LAGRAPH LIBRARY

 Similar to the LAPACK library for BLAS

 Uses SuiteSparse:GraphBLAS

 Implementations of common algorithms

o BFS, SSSP, LCC, PageRank, Boruvka

o Triangle count, 𝑘-truss

o CDLP (community detection using label propagation)

oWeakly connected components, Strongly Conn. Comps (draft)

o Betweenness centrality

oDeep neural network

T.G. Mattson et al.: LAGraph: A Community Effort to Collect Graph
Algorithms Built on Top of the GraphBLAS, GrAPL@IPDPS 2019

GraphBLAS/LAGraph

http://faculty.cse.tamu.edu/davis/GraphBLAS_files/lagraph-grapl19.pdf
http://faculty.cse.tamu.edu/davis/GraphBLAS_files/lagraph-grapl19.pdf
https://github.com/GraphBLAS/LAGraph
https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/

REQUIREMENTS BY GRAPH COMPUTATIONS

Libraries for linear-algebra based graph processing support the
following features (prioritized):

1. Sparse matrices For reasonable performance

2. Arbitrary semirings For expressive power

3. Masking A big reduction in complexity for some algos

4. Parallel execution Constant speedup, ideally by #threads

Most matrix libraries only satisfy requirement #1:

 Intel MKL, Eigen, Boost uBLAS, MTL4, Armadillo, NIST Sparse BLAS,
GMM++, CUSP (Thrust), Numpy, Efficient Java Matrix Library (EJML)

 The only exception is Julia’s SparseArrays library, where arbitrary
semirings can be used (#2) due to Julia’s sophisticated type system

GRAPHBLAS PAPERS AND BOOKS

 Standards for Graph Algorithm Primitives
o Position paper by 19 authors @ IEEE HPEC 2013

 Novel Algebras for Advanced Analytics in Julia
o Technical paper on semirings in Julia @ IEEE HPEC 2013

 Mathematical Foundations of the GraphBLAS
o Theory paper by 16 authors @ IEEE HPEC 2016

 Design of the GraphBLAS C API
o Design decisions and overview of the C API @ GABB@IPDPS 2017

 Algorithm 1000: SuiteSparse:GraphBLAS: graph algorithms
in the language of sparse linear algebra
o Algorithms in the SuiteSparse implementation @ ACM TOMS 2019

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf

BOOKS

 Mathematics of Big Data

o Authored by Jananthan & Kepner, published by MIT Press in 2018

o Generalizes the semiring-based approach for associative arrays

o Contains reprints of papers, including the HPEC’16 paper above

o Discusses D4M (Dynamic Distributed Dimensional Data Model)

 Graph Algorithms in the Language of Linear Algebra

o Edited by J. Kepner and J.R. Gilbert, published by SIAM in 2011

o Algorithms for connected components, shortest paths, max-flow,
betwenness centrality, spanning tree, graph generation, etc.

o Algorithms and data structure for fast matrix multiplication

o Predates GraphBLAS: preliminary notation, no API usage

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964

GRAPHBLAS COMMUNITY

Wiki: graphblas.org | Communication: mailing list, monthly telcos

Annual events:

 May: IEEE IPDPS conference
o GrAPL workshop (Graphs, Architectures, Programming and Learning), a merger of

• GABB (Graph Algorithms Building Blocks)

• GraML (Graph Algorithms and Machine Learning)

o See graphanalysis.org for previous editions

 Sep: IEEE HPEC conference

o GraphBLAS BoF meeting

 Nov: IEEE/ACM Supercomputing conference

o GraphBLAS Working Group

o IA3 workshop (Workshop on Irregular Applications: Architectures and Algorithms)

Blog: AldenMath by Timothy Alden Davis

http://graphblas.org/
http://graphanalysis.org/
http://aldenmath.com/blog/

REDISGRAPH

 Graph database built on top of Redis with partial (but
extending) support for the Cypher language

 Uses SuiteSparse:GraphBLAS for graph operations

 Preliminary benchmark results show good performance on
traversal-heavy workloads

R. Lipman, T.A. Davis:
Graph Algebra – Graph operations in the language of linear algebra
RedisConf 2018

R. Lipman:
RedisGraph internals
RedisConf 2019

https://www.slideshare.net/RedisLabs/redisgraph-internals-roi-lipman
https://www.slideshare.net/RedisLabs/redisgraph-internals-roi-lipman
https://www.slideshare.net/RedisLabs/redisconf18-lower-latency-graph-queries-in-cypher-with-redis-graph
https://www.slideshare.net/RedisLabs/redisconf18-lower-latency-graph-queries-in-cypher-with-redis-graph

GRAPHBLAS IMPLEMENTATIONS

 SuiteSparse:GraphBLAS

o v1.0.0: Nov 2017 – sequential

o v3.0.1: July 2019 – parallel

o v3.1.0: Oct 2019 – supports MATLAB bindings

 IBM GraphBLAS

o Complete implementation in C++, released in May 2018

o Concise but sequential

 GBTL (GraphBLAS Template Library): C++

o v1.0: parallel but no longer maintained

o v2.0: sequential

 GraphBLAST: GPU implementation, based on GBTL

GRAPHULO

 Build on top of the Accumulo distributed key-value store

 Written in Java

 Focus on scalability

V. Gadepally et al.:
Graphulo: Linear Algebra Graph Kernels
for NoSQL Databases, GABB@IPDPS 2015

https://arxiv.org/pdf/1508.07372.pdf
https://arxiv.org/pdf/1508.07372.pdf

COMBBLAS: COMBINATORIAL BLAS

 “an extensible distributed memory parallel graph library
offering a small but powerful set of linear algebra primitives”

 Not a GraphBLAS implementation but serves as an incubator
for new ideas that may later find their way into GraphBLAS

 Scales to 250k+ CPU cores

o Used on supercomputers such as Cray

A. Buluç, J.R. Gilbert: The Combinatorial BLAS: design, implementation, and application,
International Journal of High Performance Computing Applications, 2011

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.916.6801&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.916.6801&rep=rep1&type=pdf

Learning GraphBLAS

LEARNING GRAPHBLAS

 Challenging to get started – need to have an understanding of:

o Linear algebra (semirings, matrix multiplication, etc.)

o Connection between linear algebra and graph operations (intuition)

o Sizeable C API

 200+ slides presenting algorithms in GraphBLAS

o BFS variants, PageRank, Triangle count, 𝑘-truss

o Community detection using label propagation

o Luby’s maximal independent set algorithm

o computing connected components on an overlay graph

o etc.

PYGRAPHBLAS: PYTHON WRAPPER #1

 A Python wrapper

 See example code for
SSSP and triangle count

 Close to pseudo-code

 Jupyter support

Added benefit: both
Python and GraphBLAS
use 0-based indexing

michelp/pygraphblas

https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/
https://github.com/michelp/pygraphblas

GRBLAS: PYTHON WRAPPER #2

 Goal: one-to-one mapping of the GraphBLAS API

o less Pythonic

o comes with a Conda package

o compiles user-defined functions to C

jim22k/grblas

https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/
https://github.com/jim22k/grblas

TRADEOFFS OF GRAPHBLAS

 Updating CSR/CSC matrices is slow

o SuiteSparse mitigates this to some extent by allowing incremental build
before using the matrix but it still needs to rebuild the matrix before major
operations such as mxv, mxm

o But: GraphBLAS objects are opaque and alternative formats can be used
• Hornet [HPEC’18]

• faimGraph [SC’18]

• STINGER [HPEC’12]

Summary

VENUES ON GRAPH PROCESSING TECHNIQUES

 Database systems SIGMOD, VLDB, ICDE, EDBT, VLDB J., TKDE

 Database theory PODS, ICDT, TODS

 Information retrieval KDD, CIKM, WSDM, TKDD, DMKD J., & Big Data

 Operating systems OSDI, SOSP, NSDI, ICPE, EuroSys

 High-perf. computing SC, HPEC, HiPC, HPCC, HPDC, IPDPS

 Distributed computing PODC, DISC, ICDCS

 Parallel programming SPAA, ICPP, PLDI, PPoPP, ACM TOPC, Euro-Par

 Algorithm design TOMS, FOCS, STOC, SODA, SIAM J. Comput.

 Software engineering ICSE, MODELS, FSE, ASE, FASE, OOPSLA, SoSyM

 Semantic web WWW (TheWebConf), ISWC, WWW J., SWJ

 Graph transformation ICMT/ICGT, CAV, FMCAD, AGTIVE, ENTCS

 …and many other mathematics and computer science venues.

SUMMARY

 Linear algebra is a powerful abstraction

oGood expressive power

o Concise formulation of most graph algorithms

o Very good performance

o Still lots of ongoing research

 Trade-offs:

o Learning curve (maths, C programming, GraphBLAS API)

o Some algorithms are difficult to formulate in linear algebra

oOnly a few GraphBLAS implementations (yet)

 Overall: a very promising programming model for graph
algorithms suited to the age of heterogeneous hardware

SOME OPEN QUESTIONS

 What primitives should be added to GraphBLAS?

o Sorting (CDLP)

o Submatrix selection (𝑘-truss)

o Permutations (DFS)

 How to efficiently express SCC?

 How to implement GraphBLAS
in a distributed system?

 Incremental evaluation of SpMM/SpMV operations

oUse an updatable matrix representation

o Semirings rings additive inverse addition and removal

o Incremental view maintenance techniques need rings (?)

D.G. Spampinato et al.:
Linear Algebraic Depth-First Search,
ARRAYS@PLDI 2019

Y. Ahmad et al.: LA3: A Scalable Link- and
Locality-Aware Linear Algebra-Based Graph
Analytics System, VLDB 2018

https://dl.acm.org/citation.cfm?id=3315454.3329962
https://dl.acm.org/citation.cfm?id=3315454.3329962
http://www.vldb.org/pvldb/vol11/p920-ahmad.pdf
http://www.vldb.org/pvldb/vol11/p920-ahmad.pdf

ACKNOWLEDGEMENTS

 Tim Davis and Tim Mattson for helpful discussions,
members of GraphBLAS mailing list for their detailed
feedback.

 The LDBC Graphalytics task force for creating the
benchmark and assisting in the measurements.

 Master’s students at BME for developing GraphBLAS-based
algorithms: Bálint Hegyi, Márton Elekes, Petra Várhegyi,
Lehel Boér

“Nuances” – Some important
adjustments to the definitions

GRAPHBLAS SEMIRINGS*
The GraphBLAS specification defines semirings as follows:

𝐷out, 𝐷in1 , 𝐷in2 ,⊕,⊗, 0 structure is a GraphBLAS semiring defined by

 𝐷out, 𝐷in1, and 𝐷in2 three domains

 ⊕:𝐷out × 𝐷out → 𝐷out an associative and commutative addition operation

 ⊗:𝐷in1 × 𝐷in2 → 𝐷out a multiplicative operation

 0 ∈ 𝐷out an identity element for ⊕

𝐴 = 𝐷out,⊕, 0 is a commutative monoid.

𝐹 = 𝐷out, 𝐷in1 , 𝐷in2 ,⊗ is a closed binary operator.

“It is expected that implementations will utilize IEEE-754 floating point
arithmetic, which is not strictly associative.” (C API specification)

MATRIX MULTIPLICATION*

The simple formula of matrix multiplication
𝐂 = 𝐀⨁.⨂ 𝐁

𝐂 𝑖, 𝑗 =⊕
𝑗
𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

can lead to more complicated definitions. For example, what
should the binary operator sel1st 𝑥, 𝑦 = 𝑥 return if 𝑦 = 0?

sel1st 𝑥, 𝑦 = ቊ
0 if 𝑦 = 0
𝑥 otherwise

To simplify definitions, we use a generalized form of multiplication:
𝐂 𝑖, 𝑗 = ⊕

𝑘∈ind 𝐀 𝑖,: ∩ind 𝐁 :,𝑗
𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

where we only perform the multiplication in the intersection of the
non-zero indices of 𝐀’s 𝑖th row and 𝐁’s 𝑗th column.

NOTATION*

 Symbols:

o 𝐀,𝐁, 𝐂,𝐌 – matrices

o 𝐮, 𝐯,𝐰,𝐦 – vectors

o 𝑠, 𝑘 – scalar

o 𝑖, 𝑗 – indices

o 𝐦 , 𝐌 – masks

 Operators:

o ⊕– addition

o ⊗– multiplication

o ⊤ – transpose

o ⊙– accumulator

This table contains all GrB and GxB
(SuiteSparse-specific) operations.

symbol operation notation

⊕.⊗

matrix-matrix multiplication 𝐂 𝐌 ⊙= 𝐀⊕.⊗ 𝐁

vector-matrix multiplication 𝐰 𝐦 ⊙= 𝐯⊕.⊗𝐀

matrix-vector multiplication 𝐰 𝐦 ⊙= 𝐀⊕.⊗ 𝐯

⊗
element-wise multiplication
(set intersection of patterns)

𝐂 𝐌 ⊙= 𝐀⊗𝐁

𝐰 𝐦 ⊙= 𝐮⊗ 𝐯

⊕
element-wise addition
(set union of patterns)

𝐂 𝐌 ⊙= 𝐀⊕𝐁

𝐰 𝐦 ⊙= 𝐮⊕ 𝐯

𝑓 apply unary operator
𝐂 𝐌 ⊙= 𝑓 𝐀

𝐰 𝐦 ⊙= 𝑓 𝐯

⊕⋯
reduce to vector 𝐰 𝐦 ⊙= ⊕𝑗 𝐀 : , 𝑗

reduce to scalar 𝑠 ⊙= ⊕𝑖𝑗 𝐀 𝑖, 𝑗

𝐀⊤ transpose matrix 𝐂 𝐌 ⊙= 𝐀⊤

– extract submatrix
𝐂 𝐌 ⊙= 𝐀 𝐢, 𝐣

𝐰 𝐦 ⊙= 𝐯 𝐢

–
assign submatrix
with submask for 𝐂 𝐈, 𝐉

𝐂 𝐌 𝐢, 𝐣 ⊙= 𝐀

𝐰 𝐦 𝐢 ⊙= 𝐯

–
assign submatrix
with mask for 𝐂

𝐂 𝐢, 𝐣 𝐌 ⊙= 𝐀

𝐰 𝐢 𝐦 ⊙= 𝐯

– apply select operator (GxB)
𝐂 𝐌 ⊙= 𝑓 𝐀, 𝑘

𝐰 𝐦 ⊙= 𝑓 𝐯, 𝑘

– Kronecker product 𝐂 𝐌 ⊙= kron 𝐀, 𝐁

Not included in the
simplified table

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #3*

Sparse matrix extraction:
induced subgraph

Sparse submatrix assignment:
replace subgraph

Sparse matrix selection (SuiteSparse):
filtering edges

Kronecker product:
graph generation

⊗ =
𝑃

MATRIX-VECTOR MULTIPLICATION*

The operation 𝐯⊕.⊗ 𝐀 gives the vertices reachable from the ones in 𝐯.
However, GraphBLAS publications and implementations often use
𝐀⊤ ⊕.⊗ 𝐯 instead. The difference between these is that the former
produces a row vector, while the latter produces a column vector:

𝐯⊕.⊗ 𝐀 ≡ 𝐀⊤ ⊕.⊗ 𝐯⊤ ⊤

GraphBLAS does not distinguish row/column vectors, therefore the
notations are (formally) equivalent:

𝐯⊕.⊗ 𝐀 ≡ 𝐀⊤ ⊕.⊗ 𝐯

In practice, the order of the operands can have a significant impact on
performance. For example, if matrices are stored in CSR format,
computing 𝐯⊕.⊗ 𝐀 is expensive compared to 𝐀⊤ ⊕.⊗ 𝐯.

𝛀

Extra slides

THE CASE FOR LINEAR ALGEBRA-BASED GRAPH ALGORITHMS

Many irregular applications contain coarse-grained parallelism that
can be exploited by abstractions at the proper level.

Traditional graph computation
Graphs in the language

of linear algebra

Data-driven, unpredictable
communication

Fixed communication patterns

Irregular and unstructured, poor
locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine-grained data accesses,
dominated by latency

Coarse-grained parallelism,
bandwidth-limited

D. Bader et al., The GraphBLAS effort and its implications for Exascale,
SIAM Workshop on Exascale Applied Mathematics Challenges and Opportunities, 2014

https://archive.siam.org/meetings/ex14/15-buluc-slides.pdf
https://archive.siam.org/meetings/ex14/15-buluc-slides.pdf

DIRECTED HYPERGRAPH EXAMPLE

Graph algorithms in GraphBLAS

Weakly connected components

WCC: WEAKLY CONNECTED COMPONENTS (SKETCH)

𝐶 = 𝐼 ∨ 𝐴 ∨ 𝐴2 ∨ 𝐴3 ∨ 𝐴4 ∨ ⋯
𝐷 = 𝐼 + 𝐴 + 𝐴2 + 𝐴3 + 𝐴4 ∨ ⋯∨ 𝐴𝐾

𝐸 ≡ 𝐼 − 𝐴 𝐷
𝐸 = 𝐷 − 𝐴𝐷
= 𝐼 + 𝐴 + 𝐴2 + 𝐴3 + 𝐴4 +⋯− 𝐴 − 𝐴2 − 𝐴3 − 𝐴4 −⋯
= 𝐼
= 𝐼 − 𝐴 𝐷

𝐷 = 𝐼 − 𝐴 −1

J. Kepner, J.R. Gilbert:
Graph Algorithms in the Language of Linear Algebra, Chapter 3,
SIAM, 2011

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964

WCC: WEAKLY CONNECTED COMPONENTS

 The series for 𝐷 does usually not converge. However, by
replacing 𝐴 with 𝛼𝐴, where 𝛼 is a sufficiently small positive
number, the series converges. The derivation presented in
the previous slide is still valid, resulting in 𝐷 = 𝐼 − 𝛼𝐴 −1.

 While this trick ensures that the presented algorithm works
correctly, this approach is still impractical as it computes the
inverse of a sparse matrix which is dense in most cases.

WCC: WEAKLY CONNECTED COMPONENTS

 Linear Algebraic Connected Components algorithm (LACC)

o Recent result, based on the Awerbuch-Shiloach algorithm.

oDesigned for supercomputers, scales to 250,000+ CPU cores.

o “Distributed-memory LACC code that is used in our experiments
is publicly available as part of the CombBLAS library. A simplified
unoptimized serial GraphBLAS implementation is also committed
to the LAGraph Library for educational purposes.”

 See also FastSV.

A. Azad, A. Buluç: LACC: A Linear-Algebraic Algorithm for Finding Connected
Components in Distributed Memory, IPDPS 2019

https://people.eecs.berkeley.edu/~aydin/LACC.pdf
https://people.eecs.berkeley.edu/~aydin/LACC.pdf

Graph algorithms in GraphBLAS

Maximal independent set: Luby’s algorithm

LUBY’S ALGORITHM

To be done later.

Notes

ABOUT THIS PRESENTATION

 This presentation is intended to serve as an introduction to
semiring-based graph processing and the GraphBLAS.

 Common graph algorithms (BFS, shortest path, PageRank, etc.)
are used to demonstrate the features of GraphBLAS. Many of
the algorithms presented are part of the LAGraph library.

 The presentation complements existing technical talks on
GraphBLAS and can form a basis of anything from a short
20min overview to 2×90min lectures on the GraphBLAS.

 The slides contain numerous references to papers and talks.

 There are detailed textual explanations on some slides to make
them usable as a learning material.

TECHNICAL DETAILS

 The slides were created with PowerPoint 2016 using the
Open Sans and DejaVu Sans Mono font families (embedded
in the presentation).

 The mathematical expressions are typeset with
PowerPoint’s built-in Equation Editor.

 The circled numbers (denoting graph vertices) are rendered
using the standard Wingdings font.

 The text is written in Oxford English.

 The icons for referenced papers and talks are clickable and
will lead to an open-access / preprint / author’s copy version
of the referred work (if such copy exists). The icons depict
the first page of the cited document.

FUTURE WORK

 Matrix representations

o The ‘typical’ sparse matrix data structures: CSR, CRS

o Basic updatable data structures: COO, LIL, DOK

o Advanced updatable data structures: Hornet, faim

 Important algorithms

oMatrix multiplication (dot, hash, heap, Gustavson)

 Advanced GraphBLAS features

o the accumulator

omerge/replace

o submatrix extraction, assignment, Kronecker product

