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Containers, clouds and security

● From chroot to cloud-native
○ Containers are everywhere

● Often containers run inside VMs

● But why?
○ VMs provide isolation

○ Containers are easy for DevOps

● Is this nesting really necessary?



Hardware isolation

● VMs isolation is enforced by hardware

● For containers we have MMU!
○ Address space isolation is one of the best protection methods since the 

invention of the virtual memory.

○ Vulnerabilities are inevitable, how can we minimize the damage

○ Make parts of the Linux kernel use a restricted address space for better security



Securing containers with MMU

● System call interface is a large attack surface
○ Can we restrict kernel mappings during system call execution?

● Major container isolation are namespaces
○ Can we protect namespaces with page tables?



Related work

● Page Table Isolation
○ Restricted context for kernel-mode code on entry boundary

● WIP: improve mitigation for HyperThreading leaks
○ KVM address space isolation

■ Restricted context for KVM VMExit handlers

○ Process local memory
■ Kernel memory visible only in the context of a specific process

https://lore.kernel.org/lkml/1557758315-12667-1-git-send-email-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20190612170834.14855-1-mhillenb@amazon.de/


System Call Isolation (SCI)

● Execute system calls in a restricted address space
○ System calls run with very limited page tables

○ Accesses to most of the kernel code and data cause page faults

● Ability to inspect and verify memory accesses
○ For code: only allow calls and jumps to known symbols to prevent ROP attacks

○ For data: TBD?

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/
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SCI flow
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SCI in practice

● Weakness
○ Cannot verify RET targets

○ Performance degradation

○ Page granularity

○ Intel CET makes SCI irrelevant

● Follow up possibility
○ Use ftrace to construct shadow stack

○ Utilize compiler return thunk to verify RET targets



Exclusive mappings

● Memory region mapped only in a 

single process page table
○ Excluded from the direct map

● Use-cases
○ Store secrets

○ Protect the entire VM memory
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mmap(MAP_EXCLUSIVE)

● Memory region in a process is isolated from the rest of the system

● Can be used to store secrets in memory:

void *addr = mmap(MAP_EXCLUSIVE, ...);
struct iovec iov = { 

.base = addr,

.len = PAGE_SIZE,
};

fd = open_and_decrypt(“/path/to/secret.file”, O_RDONLY);
readv(fd, &iov, 1);

https://lore.kernel.org/lkml/1572171452-7958-1-git-send-email-rppt@kernel.org/

https://lore.kernel.org/lkml/1572171452-7958-1-git-send-email-rppt@kernel.org/


mmap(MAP_EXCLUSIVE)

+ Convenient mmap()/mpropect()/madvise() interfaces
● Plugable into existing allocators

● Can be used at post-allocation time

+ Simple implementation

- Requires page flag and VMA flag
● We have ran out long time ago

- Multiple modifications to core mm core

— Fragmentation of the direct map



● Extension to memfd_create() system call

int fd, ret;
void *p;

fd = memfd_create("secure", MFD_CLOEXEC | MFD_SECRET);
if (fd < 0)

perror("open"), exit(1);
if (ioctl(fd, MFD_SECRET_EXCLUSIVE))

perror("ioctl"), exit(1);

p = mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (p == MAP_FAILED)

perror("mmap"), exit(1);

secure_page = p;

https://lore.kernel.org/lkml/20200130162340.GA14232@rapoport-lnx/

memfd_create(MFD_SECRET)

http://man7.org/linux/man-pages/man2/memfd_create.2.html
https://lore.kernel.org/lkml/20200130162340.GA14232@rapoport-lnx/


memfd_create(MFD_SECRET)

+ Black magic is behind a file descriptor
● .mmap() and .fault() hide the details from core mm

+ May use memory preallocated at boot
● Yet to be implemented

- Auditing of core mm core is still required
- May introduce complexity into page cache and mount APIs

— Fragmentation of the direct map



Demo



Protecting namespaces with page tables

● Most objects in a namespace are private
○ No need to map them in other namespaces

● Per-namespace page tables improve isolation
○ Shared between processes in a namespace

○ Private objects are mapped exclusively by owning namespace page table



Address space for netns

● Netns is an independent network stack
○ Network devices, sockets, protocol data

● Objects inside the network namespace are private
○ Except skb’s that cross namespace boundaries

● Exclusive mappings of netns objects effectively creates isolated 

networking stack, just like in a VM



Restricted Mappings Framework

1. Create a restricted mapping from an existing mapping

2. Switch to the restricted mapping when entering a particular 

execution context

3. Switch to the unrestricted mapping when leaving that execution 

context

4. Keep track of the state

* From tglx comment to KVM ASI patches:

https://lore.kernel.org/kvm/alpine.DEB.2.21.1907122059430.1669@nanos.tec.linutronix.de/

https://lore.kernel.org/kvm/alpine.DEB.2.21.1907122059430.1669@nanos.tec.linutronix.de/


APIs for Kernel Page Table Management

● Create first class abstraction for page tables

○ Break the assumption ‘page table == struct mm_struct’

○ Introduce struct pg_table to represent page table

● Clone and populate restricted page tables

○ Copy page table entries at a specified level

● Drop mappings from the restricted page tables

● On-demand memory mapping and unmapping

● Tear down restricted page tables
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Restricted Kernel Context Creation

● Pre-built at boot time (PTI)

● When creating process
○ During clone()

○ PTI page table, process-local page table

● When specifying namespace
○ During unshare() or setns()

○ Namespace-local page table

● When creating VM or virtual CPU
○ During KVM vcpu_create() or vm_create()

○ KVM ASI page table
20



Context Switch

● Explicit transitions
○ Syscall boundary (PTI)

○ KVM ASI enter/exit

● Implicit transitions
○ Interrupt/exception, process context switch

● Need unified mechanism to switch kernel page table
○ Same mechanism for PTI and KVM ASI

● No change for processes with private memory
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Freeing Restricted Page Tables

● Integration with existing TLB management infrastructure

○ Avoid excessive TLB shootdowns

● Special care for shared page table levels

○ Avoid freeing main kernel page tables

● Proper accounting of page table pages



Private Memory Allocations

● Extend alloc_page() and kmalloc() with context awareness

● Pages and objects are visible in a single context

○ Can be a process or all processes in a namespace

● Special care for objects traversing context boundaries
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Per-Context Allocations

● Allow per-context allocations
○ __GFP_EXCLUSIVE - for pages

○ SLAB_EXCLUSIVE  - for slabs

○ PG_exclusive page type

● Drop pages from the direct map on allocation
○ set_memory_np()/set_pages_np()

● Put them back on freeing
○ set_memory_p()/set_pages_p()

● Only allowed in a context of a process with non-default page table
○ if (current->mm && &current->mm.pgt != &init_mm.pgt)



Private SL*B Caches

● First per-context allocation creates a new cache
○ Similar to memcg child caches

├── kmalloc-1k
│   └── cgroup
│       └── kmalloc-1k(108:A)
├── kmalloc-1k(1)
│   └── cgroup

● Allocate pages for cache with __GFP_EXCLUSIVE

● Map/unmap pages for out-of-context accesses

○ SLUB  debugging

○ SLAB freeing from other context, e.g. workqueue
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Address space for netns

● Kernel page table per namespace
@@ -52,6 +52,7 @@ struct bpf_prog;
 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)

 struct net {
+   pg_table               *pgt;       /* namespace private page table */

refcount_t          passive;    /* To decide when the network */
                                             /* namespace should be freed. */

● Processes in a namespace share view of the kernel mappings
○ Switch page table at clone(), unshare(), setns() time.

● Private kernel objects are mapped only in the namespace PGD
○ Enforced at object allocation time



Proof of concept implementation

● Private memory allocations with kmalloc()
○ Mapped only in processes in a single netns

○ Still visible in init_mm address space

● Socket objects, protocol data and skb’s are allocated using 

__GFP_EXCLUSIVE
● Backdoor syscall for testing

● Surprisingly, there is network traffic inside a netns ;-)



Private allocations

Putting it all together

Page Table Management API

Page Allocator

SL*B
Page cache extensions

Namespaces isolationUser-exclusive memory KVM isolation



Conclusions

● Using restricted contexts reduces the attack surface

● Complexity vs security benefits are yet to be evaluated

● Reworking kernel address space management is a major challenge
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