
Address Space Isolation
in the Linux Kernel

Mike Rapoport, James Bottomley
<{rppt,jejb}@linux.ibm.com>

This project has received funding from the European
Union’s Horizon 2020 research and innovation

programme under grant agreement No 825377

Containers, clouds and security

● From chroot to cloud-native
○ Containers are everywhere

● Often containers run inside VMs

● But why?
○ VMs provide isolation

○ Containers are easy for DevOps

● Is this nesting really necessary?

Hardware isolation

● VMs isolation is enforced by hardware

● For containers we have MMU!
○ Address space isolation is one of the best protection methods since the

invention of the virtual memory.

○ Vulnerabilities are inevitable, how can we minimize the damage

○ Make parts of the Linux kernel use a restricted address space for better security

Securing containers with MMU

● System call interface is a large attack surface
○ Can we restrict kernel mappings during system call execution?

● Major container isolation are namespaces
○ Can we protect namespaces with page tables?

Related work

● Page Table Isolation
○ Restricted context for kernel-mode code on entry boundary

● WIP: improve mitigation for HyperThreading leaks
○ KVM address space isolation

■ Restricted context for KVM VMExit handlers

○ Process local memory
■ Kernel memory visible only in the context of a specific process

https://lore.kernel.org/lkml/1557758315-12667-1-git-send-email-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20190612170834.14855-1-mhillenb@amazon.de/

System Call Isolation (SCI)

● Execute system calls in a restricted address space
○ System calls run with very limited page tables

○ Accesses to most of the kernel code and data cause page faults

● Ability to inspect and verify memory accesses
○ For code: only allow calls and jumps to known symbols to prevent ROP attacks

○ For data: TBD?

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/

https://lore.kernel.org/lkml/1556228754-12996-1-git-send-email-rppt@linux.ibm.com/

SCI page tables

Kernel
Page Table

Kernel entry

User space

Kernel space

System call
Page Table

Kernel entry

User space

Syscall entry

User
Page Table

Kernel entry

User space

SCI flow

switch
address
space

access
unmapped

code
page fault

is access
safe?

No

Yes
map
the

page

switch
address
space

system
call

kill
process

SCI in practice

● Weakness
○ Cannot verify RET targets

○ Performance degradation

○ Page granularity

○ Intel CET makes SCI irrelevant

● Follow up possibility
○ Use ftrace to construct shadow stack

○ Utilize compiler return thunk to verify RET targets

Exclusive mappings

● Memory region mapped only in a

single process page table
○ Excluded from the direct map

● Use-cases
○ Store secrets

○ Protect the entire VM memory

Kernel Page
Table

User space

Kernel space

Kernel entry

User Page Table

Kernel entry

User space

Kernel space

mmap(MAP_EXCLUSIVE)

● Memory region in a process is isolated from the rest of the system

● Can be used to store secrets in memory:

void *addr = mmap(MAP_EXCLUSIVE, ...);
struct iovec iov = {

.base = addr,

.len = PAGE_SIZE,
};

fd = open_and_decrypt(“/path/to/secret.file”, O_RDONLY);
readv(fd, &iov, 1);

https://lore.kernel.org/lkml/1572171452-7958-1-git-send-email-rppt@kernel.org/

https://lore.kernel.org/lkml/1572171452-7958-1-git-send-email-rppt@kernel.org/

mmap(MAP_EXCLUSIVE)

+ Convenient mmap()/mpropect()/madvise() interfaces
● Plugable into existing allocators

● Can be used at post-allocation time

+ Simple implementation

- Requires page flag and VMA flag
● We have ran out long time ago

- Multiple modifications to core mm core

— Fragmentation of the direct map

● Extension to memfd_create() system call

int fd, ret;
void *p;

fd = memfd_create("secure", MFD_CLOEXEC | MFD_SECRET);
if (fd < 0)

perror("open"), exit(1);
if (ioctl(fd, MFD_SECRET_EXCLUSIVE))

perror("ioctl"), exit(1);

p = mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (p == MAP_FAILED)

perror("mmap"), exit(1);

secure_page = p;

https://lore.kernel.org/lkml/20200130162340.GA14232@rapoport-lnx/

memfd_create(MFD_SECRET)

http://man7.org/linux/man-pages/man2/memfd_create.2.html
https://lore.kernel.org/lkml/20200130162340.GA14232@rapoport-lnx/

memfd_create(MFD_SECRET)

+ Black magic is behind a file descriptor
● .mmap() and .fault() hide the details from core mm

+ May use memory preallocated at boot
● Yet to be implemented

- Auditing of core mm core is still required
- May introduce complexity into page cache and mount APIs

— Fragmentation of the direct map

Demo

Protecting namespaces with page tables

● Most objects in a namespace are private
○ No need to map them in other namespaces

● Per-namespace page tables improve isolation
○ Shared between processes in a namespace

○ Private objects are mapped exclusively by owning namespace page table

Address space for netns

● Netns is an independent network stack
○ Network devices, sockets, protocol data

● Objects inside the network namespace are private
○ Except skb’s that cross namespace boundaries

● Exclusive mappings of netns objects effectively creates isolated

networking stack, just like in a VM

Restricted Mappings Framework

1. Create a restricted mapping from an existing mapping

2. Switch to the restricted mapping when entering a particular

execution context

3. Switch to the unrestricted mapping when leaving that execution

context

4. Keep track of the state

* From tglx comment to KVM ASI patches:

https://lore.kernel.org/kvm/alpine.DEB.2.21.1907122059430.1669@nanos.tec.linutronix.de/

https://lore.kernel.org/kvm/alpine.DEB.2.21.1907122059430.1669@nanos.tec.linutronix.de/

APIs for Kernel Page Table Management

● Create first class abstraction for page tables

○ Break the assumption ‘page table == struct mm_struct’

○ Introduce struct pg_table to represent page table

● Clone and populate restricted page tables

○ Copy page table entries at a specified level

● Drop mappings from the restricted page tables

● On-demand memory mapping and unmapping

● Tear down restricted page tables

19

Restricted Kernel Context Creation

● Pre-built at boot time (PTI)

● When creating process
○ During clone()

○ PTI page table, process-local page table

● When specifying namespace
○ During unshare() or setns()

○ Namespace-local page table

● When creating VM or virtual CPU
○ During KVM vcpu_create() or vm_create()

○ KVM ASI page table
20

Context Switch

● Explicit transitions
○ Syscall boundary (PTI)

○ KVM ASI enter/exit

● Implicit transitions
○ Interrupt/exception, process context switch

● Need unified mechanism to switch kernel page table
○ Same mechanism for PTI and KVM ASI

● No change for processes with private memory

21

Freeing Restricted Page Tables

● Integration with existing TLB management infrastructure

○ Avoid excessive TLB shootdowns

● Special care for shared page table levels

○ Avoid freeing main kernel page tables

● Proper accounting of page table pages

Private Memory Allocations

● Extend alloc_page() and kmalloc() with context awareness

● Pages and objects are visible in a single context

○ Can be a process or all processes in a namespace

● Special care for objects traversing context boundaries

23

Per-Context Allocations

● Allow per-context allocations
○ __GFP_EXCLUSIVE - for pages

○ SLAB_EXCLUSIVE - for slabs

○ PG_exclusive page type

● Drop pages from the direct map on allocation
○ set_memory_np()/set_pages_np()

● Put them back on freeing
○ set_memory_p()/set_pages_p()

● Only allowed in a context of a process with non-default page table
○ if (current->mm && ¤t->mm.pgt != &init_mm.pgt)

Private SL*B Caches

● First per-context allocation creates a new cache
○ Similar to memcg child caches

├── kmalloc-1k
│ └── cgroup
│ └── kmalloc-1k(108:A)
├── kmalloc-1k(1)
│ └── cgroup

● Allocate pages for cache with __GFP_EXCLUSIVE

● Map/unmap pages for out-of-context accesses

○ SLUB debugging

○ SLAB freeing from other context, e.g. workqueue

25

Address space for netns

● Kernel page table per namespace
@@ -52,6 +52,7 @@ struct bpf_prog;
 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)

 struct net {
+ pg_table *pgt; /* namespace private page table */

refcount_t passive; /* To decide when the network */
 /* namespace should be freed. */

● Processes in a namespace share view of the kernel mappings
○ Switch page table at clone(), unshare(), setns() time.

● Private kernel objects are mapped only in the namespace PGD
○ Enforced at object allocation time

Proof of concept implementation

● Private memory allocations with kmalloc()
○ Mapped only in processes in a single netns

○ Still visible in init_mm address space

● Socket objects, protocol data and skb’s are allocated using

__GFP_EXCLUSIVE
● Backdoor syscall for testing

● Surprisingly, there is network traffic inside a netns ;-)

Private allocations

Putting it all together

Page Table Management API

Page Allocator

SL*B
Page cache extensions

Namespaces isolationUser-exclusive memory KVM isolation

Conclusions

● Using restricted contexts reduces the attack surface

● Complexity vs security benefits are yet to be evaluated

● Reworking kernel address space management is a major challenge

Thank
You

