
Automate your workflows with Kotlin
Fosdem - 2020

1

Automate your workflows with Kotlin

@martinbonnin @mgauzins

2

A daily work...

1. Assign a ticket
2. Create a branch
3. Code... 🤓
4. Create a pull request
5. Move ticket state
6. Merge pull request
7. Move ticket state
8. Create an alpha

a. Increment a version
b. Tag
c. Push

9. Send a message to
designers/product owners

10. Integrate feedbacks
11. Back to step 1

● Manage app translations
● Keep the store app up to date

(images, listings, archives)
● Manage app rollout
● Notify about the updates
● Publish to alternative stores

But also...

3

Environment

4

Appcenter

Slack Jira

Github
PlayStore

CI

Transifex

Why automating ?

● Reliability

● Reproducibility

● Documentation

● Fun

● Kotlin to the rescue

5

● It takes times.

https://xkcd.com/1319/

https://xkcd.com/1319/

Why Kotlin?

● The language we use every day
○ No context change (bash syndrome)
○ Every team member knows it

● Modern

● Great IDE

● Great Ecosystem

6

What did we replace ?

7

Fastlane
(Ruby)

Transifex cli
(Ruby)

after_success.sh
(Bash)

generate_docs.sh
(Bash)

Github hub
(Go)

build.gradle
(Groovy)

Ad-hoc scripts 3rd party tools Build systemGeneral purpose
tools

● Kotlin scripts
○ Based on Kscript

● Kotlin command line app (cli)
○ Called Kinta
○ Based on Clikt

Tools we used

8

Kscript

9

Scripting - motivations

10

● For short projects/single file projects

● No need for gradle

● Easy to setup/use

Scripting - simple example

// hello.kts
println("Hello ${args[0]}!")

// running the script
$ kotlinc -script hello.kts Fosdem
Hello Fosdem!

11

https://github.com/Kotlin/KEEP/blob/master/proposals/scripting-support.md

https://github.com/Kotlin/KEEP/blob/master/proposals/scripting-support.md

Kscript - scripting improvements

● Compiled script caching
● Shebang and interpreter usage
● Dependencies
● Standalone binaries
● IDE support
● https://github.com/holgerbrandl/kscript

12

https://github.com/holgerbrandl/kscript

Kscript - installation

curl -s "https://get.sdkman.io" | bash # install sdkman
source ~/.bash_profile # add sdkman to PATH

sdk install kotlin # install Kotlin
sdk install kscript # install Kscript

touch hello.kts
kscript --idea hello.kts # start the IDE

13

Kscript

14

// weekend.kts
#!/usr/bin/env kscript
@file:DependsOn("com.squareup.okhttp3:okhttp
:4.3.1")

import okhttp3.OkHttpClient
import okhttp3.Request

val weekend =
Request.Builder().get().url("http://isitweek
endyet.com/").build().let {
 OkHttpClient().newCall(it)
}.execute().body!!.string().toLowerCase().co
ntains("yes")

if (weekend) {
 println("It is the weekend!")
} else {
 println("Not yet :-|")
}

$ chmod +x weekend.kts

$./weekend.kts
It is the weekend!

Kscript - IDE

15$ kscript --idea weekend.kts

Kscript - Debugger

16

Kscript - Real life examples

17

● Generating project website (mkdocs + github pages)

● Install scripts

● Migration from build.gradle to build.gradle.kts

● Finding duplicates in string.xml

● Categorizing my expenses !

● etc...

Scripting - limitations

18

● JVM required

● JVM startup time

● Multiple files is hard to maintain

● No Gradle => no plugins, kapt, etc...

Kinta: a Kotlin Cli

19

20

03 04

Help

Commands
customisable, nested

commands

Argument/Option
composable, type safe,

prompt, default

➔ Open Source library
➔ Command Line

Interface for Kotlin

CLIKT : Presentation

https://github.com/ajalt/clikt

https://github.com/ajalt/clikt

CLIKT to Kinta

● We need entry points for workflows then
commands

● Provide a simple way to launch theses
commands by anyone. (Command line
interface)

● Reach even more platforms

21

Kinta CLI integration

● apply plugin: 'application'

● Create a jar

● Specify the ‘Main’ class

● Generate starting scripts

plugins {
 application
}

tasks.withType<Jar> {
 archiveFileName.set("kinta-cli.jar")
 manifest {
 attributes("Main-Class" to com.dailymotion.kinta.MainKt")
 }
 from(configurations.runtimeClasspath.get().map {

if (it.isDirectory) it else zipTree(it)
 })
}

application {
 mainClassName = "com.dailymotion.kinta.MainKt"
}

22build.gradle.kts

PublishPlayStore workflow

● What is a workflow?
● Workflow detail

○ Upload archive

○ Create a release on a specific track

○ Find a local changelog for the version

○ Upload the changelog

23
kinta publish beta --archiveFile=app-release.aab

PublishPlayStore workflow

object PublishPlayStore : CliktCommand(
name = "publish",
help = "Publish a version on the given track") {

 private val track by argument("--track", help = "The Play Store track")

 private val archiveFile by argument("--archiveFile")

 private val percent by option("--percent", help = "The user fraction receiving the update").double()

 override fun run() {

// Beautiful code is coming...
 }
}

 override fun run() {

 PlayStoreIntegration.uploadDraft(
 archiveFile = File(archiveFile),
 track = track
)

PlayStoreIntegration.createRelease(
 track = track,

listVersionCodes = listOf(versionCode),
percent = percentToApply

)

val changeLogs = LocalMetadataHelper.getChangelog(versionCode)

PlayStoreIntegration.uploadWhatsNew(
 versionCode = versionCode,

whatsNewProvider = changeLogs
)

}
24

A Swiss knife

Git - tickets
● startWork
● PR

Translations
● txPull
● txPush
● txPR

Common tools
● trigger
● branch
● hotfix
● cleanLocal
● cleanRemote

Play Store metadatas
● uploadWhatsNew
● uploadListing
● uploadScreenshots
● generateScreenshots

Play Store releases
● beta
● release

Builds
● nightly
● buildPR
● buildTag

25

The daily work becomes simpler!

4. Create a pull request
5. Move ticket state

kinta startWork {TICKET_ID}1. Assign a ticket
2. Create a branch

7. Move ticket state
8. Create an alpha

Increment version
Tag
Push

9. Send a message

3. Code

6. Merge pull request

(Sorry you definitely have to write code)

kinta pr

Keep the validation on GitHub interface

kinta nightly

26

What’s next

27

Kinta - customization

28

● Make the kinta tool usable outside Dailymotion

● 3rd party services have a well defined API…

● … but every organization has their own processes and workflows.

● There’s a fine line between customization and reuse

Kinta - Integration and Workflows

29

An Integration is:

● A Kotlin class linked to a specific
domain:

○ Github
○ Transifex
○ etc...

● Highly reusable
● Redistributed
● Static

○ It doesn’t change often
● Composed of atomic methods
● Documented using Kdoc
● Inside the redistributed

kinta-integrations artifact

A Workflow is:

● A Clikt command for a specific
complex task:

○ Publish a release
○ Create a Translation PR
○ etc...

● Inside the host project

● Most of the times specific to the host
project

● Uses integrations to accomplish
complex tasks

● Documented using clikt

Kinta - Custom workflows

30

● Custom workflows are built using gradle and loaded at runtime using
a ServiceLocator

● Kinta also comes with default built in workflows:
○ Publishing to the play store
○ Opening a pull request
○ etc...

Kinta cli

kinta-integrations.jar

custom-workflows.jar builtin-workflows.jar

31

● Figuring out a way to distribute the kinta binary

● Also distribute the backend/webapp that hosts artifacts

● https://github.com/dailymotion/kinta

● Feedbacks welcome

● Disclaimer: it’s still very early stage and things may break

What’s next

https://github.com/dailymotion/kinta

Thanks.

32

