
Kiran Chandramohan
Arm Ltd

Flang: The Fortran Frontend
of LLVM

LLVM devroom, FOSDEM
1 Feb 2020

2 © 2019 Arm Limited

Contents
• A word about Fortran

• Old Flang

• New Flang/F18
• Compiler stages

• OpenMP

• Driver

• Submission to llvm-repo

• How to contribute

• Status

• Conclusion

3 © 2019 Arm Limited

A word about Fortran
• Fortran is a popular language in High Performance Computing

• "Fortran remains the pre-eminent language in high-performance computing. It is a particularly
outstanding language for number crunching, working with sizable floating-point data, or parallel
processing. Its strengths in array operations--its wide variety of routines--make it attractive, and there
is a huge library of freely available high-performance routines written over 40 years that still work
together." – SteveLionel aka Dr. Fortran in CACM September 2017.

• Is a modern language with support for Object Orientation, Modules, Parallelism etc
• Usage in the real world

• Weather Forecasting (WRF, UM), Numerical simulation/modelling (VASP, CP2K) etc
• Libraries : LAPACK, SCIPY

• Standardised
• 2018 latest published standard
• 202X and 202Y in the works

4 © 2019 Arm Limited

Fortran popularity on Archer supercomputer

• One bubble per application
• Size of the bubble represents amount of

time used on Archer
• Color represents number of users
• https://www.archer.ac.uk/status/codes/

https://www.archer.ac.uk/status/codes/

5 © 2019 Arm Limited

Old Flang

Flang is a Fortran frontend designed to work with the LLVM Compiler Infrastructure
• Sponsored by US DoE and its National Labs
• Open-sourced by Nvidia/PGI with an Apache-2 license
• Switched to LLVM License
• Available since May 2017. https://github.com/flang-compiler/flang
• Supports X86_64, Aarch64 and PowerPC
• Fills a key gap in LLVM for HPC

Common frontend for some commercial compilers
• PGI Compiler
• Arm Compiler for Linux
• AMD AOCC

https://github.com/flang-compiler/flang

6 © 2019 Arm Limited

Performance

20 core Intel Skylake Gold processor @ 2.4GHz with 256 GB
memory

Source : Flang Update by Steve Scalpone @ Euro LLVM, 2018

7 © 2019 Arm Limited

Standards Conformance

Fortran 2003
Full Support

A few intrinsics are not supported in
intialisation

Fortran 2008
Partial Support

Submodules, Block construct,
contiguous attribute, intrinsics
(Bessel, gamma, norm2 etc)

Do concurrent supported with serial
execution

Coarrays, intrinsics (merging, masking
etc)

No plan for Coarrays

Fortran 2018
No plan

X

8 © 2019 Arm Limited

Issues

Prolonged Pull Request
processing

Previously due to dependency of
Flang on PGI’s commercial
compiler
Currently blocked due to lack of CI

Code is old, difficult to
maintain, entry barrier is
high
Difficult to implement new
features

Error messages do not
give full information (e.g :
no column)

Flang cannot be an LLVM
project

Written in C
Cannot be used as a library or for
building tools
Does not use the IRBuilder
Command line flags are not name
based

Time for a new Flang?

9 © 2019 Arm Limited

New Flang/F18

New Fortran frontend developed as an
Open source Project

• Accepted as the LLVM Fortran frontend
• LLVM License. Apache with LLVM

Exceptions
• No CLA required
• PGI/Nvidia is the lead developer
• Arm, AMD, US National Labs

contributing

Features

• Uses 2018 standard as the reference for
implementation

• Very standards friendly
• Written in modern C++ (C++17)
• AST as C++ classes
• AST lowered only after semantic checks
• High quality source locations
• Can be used for tooling
• Flangd already in the works

10 © 2019 Arm Limited

F18 Preprocessing

• Prescanner generates cooked character stream
• Normalized source
• Expanded macros, character case
• Hides complexity from rest of compiler

• Provenance
• Index into cooked character stream
• Map from cooked character stream to sources

maintained

Input/Output

Compiler Pass/Stage

11 © 2019 Arm Limited

F18 Parsing

• Recursive Descent Parsing
• Grammar taken from standard and suitably

modified
• Left recursion removed

• Uses Parser combinators
• Token parser
• Operators & functions to combine parsers

• Parse tree closely follows specification in the
standard

!Fortran source
integer::x=1

//lib/parser/Fortran-parsers.cpp
PARSER(construct<EntityDecl>(objectName,
maybe(arraySpec), maybe(coarraySpec),
maybe("*" >> charLength),
maybe(initialization)))

//Parse Tree Node (include/flang/parser/parse-tree.h)
std::tuple<ObjectName,
std::optional<ArraySpec>,
std::optional<CoarraySpec>,
std::optional<CharLength>,
std::optional<Initialization>> t;

//2018 standards document
//R803 entity-decl ->
//object-name [(array-spec)] [lbracket coarray-spec rbracket]
// [* char-length] [initialization]

12 © 2019 Arm Limited

F18 Semantic Analysis

• Checks the rules/constraints mentioned in the
standard

• Label resolution
• Name resolution (Symbol Table)
• Modifies parse tree if ambiguous
• Constant Expression evaluation
• Expression and Statement Semantic Checks
• Emits Module files

Input/Output

Compiler Pass/Stage

13 © 2019 Arm Limited

Module Format
• Modules will be stored as Fortran source

• Module files will contain a header
– Magic string, Version, Checksum

• The body will contain declarations of all user visible entities

• Reading module files is fast
• Fast parser, No pre-processing necessary

!vars.mod
!mod$ v1 sum:672b5185d5193446
module vars
integer(4)::a
real(4)::b
contains
subroutine add_val_a(x)
integer(4)::x
end
end

!mymod.f90
module vars
integer :: a
real :: b
contains

subroutine add_val_a(x)
integer :: x
a = a + x

end subroutine
end module

14 © 2019 Arm Limited

Optimizer Input/Output

Compiler Pass/Stage

• Uses MLIR for developing a high level IR
• MLIR is a framework for developing IRs
• FIR (Fortran IR) is the name of the dialect
• After several optimizations, the FIR dialect is converted

to the LLVM dialect
• Do optimizations which require Fortran semantics

• The LLVM dialect is then translated to LLVM IR
• Refer to llvm-dev talk for more details
• https://www.youtube.com/watch?v=ff3ngdvUang

https://www.youtube.com/watch%3Fv=ff3ngdvUang

15 © 2019 Arm Limited

OpenMP

MLIR
• Flang compiler uses the MLIR based FIR dialect as its IR
• FIR models the Fortran language portion but does not have a representation for

OpenMP constructs
• Add a dialect in MLIR for OpenMP
• MLIR provides common framework for representing OpenMP and Fortran constructs
• Take advantage of optimisations and avoid black boxes.

OpenMP IRBuilder
• Reusing codegen from Clang
• Refactor codegen for OpenMP constructs in Clang and move to the LLVM directory

16 © 2019 Arm Limited

High Level Design for OpenMP

17 © 2019 Arm Limited

Example : OpenMP Parallel

!Fortran code
!$omp parallel

c = a + b
!$omp end parallel
!More Fortran code>

<Fortran parse tree>
| | ExecutionPartConstruct ->
ExecutableConstruct ->
OpenMPConstruct ->
OpenMPBlockConstruct
| | | OmpBlockDirective -> Directive =
Parallel
| | | OmpClauseList ->
| | | Block
| | | | ExecutionPartConstruct ->
ExecutableConstruct -> ActionStmt ->
AssignmentStmt
| | | | | Variable -> Designator ->
DataRef -> Name = 'c’
| | | | | Expr -> Add
| | | | | | Expr -> Designator -> DataRef
-> Name = 'a’
| | | | | | Expr -> Designator -> DataRef
-> Name = 'b’
| | | OmpEndBlockDirective ->
OmpBlockDirective -> Directive =
Parallel <More Fortran parse tree>

Mlir.region(…) {
…
omp.parallel {

%1 = addf %2, %3 : f32
}
%21 = <more fir> … }

Fortran source with OpenMP Flang parse tree MLIR: FIR + OpenMP

18 © 2019 Arm Limited

Example : OpenMP Parallel

Mlir.region(…)
{
…
omp.parallel {

%1 = llvm.fadd %2, %3 : !llvm.float
}
%21 = <more llvm dialect>
…
}

define @outlined_parallel_fn(...)
{

…
%1 = fadd float %2, %3
...

}
define @xyz(…)
{

%1 = alloca float
....
call

kmpc_fork_call(...,outlined_parallel_fn,...)
}

MLIR: LLVM + OpenMP dialect LLVM IR

Use OpenMP
IRBuilder

19 © 2019 Arm Limited

Example : OpenMP Collapse

!$omp parallel do private(j) collapse(2)
do i=lb1,ub1

do j=lb2,ub2
...
...

end do
end do

Mlir.region(…) {
omp.parallel {

omp.do {collapse = 2} {
fir.do %i = %lb1 to %ub1 : !fir.integer {

fir.do %j = %lb2 to %ub2 : !fir.integer {
...

}
}

}
}

}

Fortran source with OpenMP MLIR: FIR + OpenMP dialects

20 © 2019 Arm Limited

Example : OpenMP Collapse

Mlir.region(…) {
omp.parallel {

omp.do {collapse = 2} {
loop.for %i = %lb1 to %ub1 :
!integer {

loop.for %j = %lb2 to
%ub2 : !integer {

...
}

}
}

}
}

Mlir.region(…) {
omp.parallel {

omp.do {
%ub3 = …
loop.for %i = 0 to %ub3 :
!integer {
…

}
}

}
}

}

Mlir.region(…) {
omp.parallel {

%ub3 = …
omp.do %i = 0 to %ub3 :

!integer {
…

}
}

}
}

MLIR: FIR + OpenMP + loop MLIR: FIR + OpenMP + loop MLIR: LLVM + OpenMP

Loop Collapsed

21 © 2019 Arm Limited

Driver
• Introduces a bin/flang binary
• Reuses libclangDriver and Options.td
• Sample invocation

bin/flang -o foobar foobar.f90
bin/flang -fc1 foobar.f90 -o /tmp/foobar_cafe1234.o

• HPC applications are mixed Fortran, C, C++
• Important that frontend drivers are aware of each other
• Can also be invoked as

bin/clang –driver-mode=FORTRAN –o foobar foobar.f90
• Without the driver mode will invoke gfortran (for now)

• See RFC for more details.
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062669.html

http://lists.llvm.org/pipermail/cfe-dev/2019-June/062669.html

22 © 2019 Arm Limited

Submission to llvm-project

Initial submission
discussion provided some

feedback
Parser and Semantic analysis do

not use LLVM API
IR (MLIR) uses

Currently addressing the
issues pointed out by the

community

Matching LLVM coding
guidelines

Moving public headers to include
folder

Renaming *.cc as *.cpp
Removing additional settings in

clang-format

Using LLVM Infrastructure

Filesystem Handling
Using LLVM streams

Lit for testing

Using LLVM data-
structures wherever

applicable

23 © 2019 Arm Limited

Status
• Parser work is complete

• Parses Fortran 2018, OpenMP 4.5

• Semantic Checks are almost complete
• Work in progress on MLIR based optimizer
• Work beginning on

• Runtime
– Rewriting some portions in C++ (I/O in progress)
– Math library will continue to be pgmath

• OpenMP

• Tentative Timeline
Moving to llvm-project repo 1 or 2 months

Serial codegen Middle of this year

Parallel codegen (OpenMP 4.5) Early next year

OpenMP 5.0 + Coarrays End of 2021

24 © 2019 Arm Limited

Contributions

Project welcomes contributions

Code, Bug reports

Start with the documentation

https://github.com/flang-
compiler/f18/tree/master/documentation
Start with C++style.md,
FortranForCProgrammers.md,
Overview.md

Projects page contains work
items finished, in progress and
not started.
Can pick up tasks from here or from issues
tracker
Send a mail to flang-dev before starting to
work
Code reviews in github
Read PullRequestChecklist.md before
submitting
https://github.com/flang-
compiler/f18/projects

NOTE: These links and process
will change after submission to
LLVM project
Code reviews will be in phabricator

https://github.com/flang-compiler/f18/tree/master/documentation
https://github.com/flang-compiler/f18/projects

25 © 2019 Arm Limited

Conclusion

Old Flang demonstrated
that an industry strength,
performant LLVM based

Fortran compiler is
possible

New Flang/F18 addresses
the deficiencies

New Flang will be the
Fortran frontend of LLVM

Submission to LLVM expected to
happen soon

Fills a gap for the LLVM HPC story
Written in modern C++

Uses MLIR
Shares code for OpenMP, Driver

etc.

Aspires to be the compiler
of choice for prototyping

Fortran features for
standardization

Adheres to 2018 standard

New Flang is under
development

You can contribute

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2019 Arm Limited

