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The Bitter Lesson (of AI)*

“Methods that scale with computation are 
the future of AI”**

“The two (general purpose) methods that 
seem to scale …

... are search and learning.”*
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** https://www.youtube.com/watch?v=EeMCEQa85tw

Rich Sutton 
(Father of  Reinforcement Learning)

* http://www.incompleteideas.net/IncIdeas/BitterLesson.html

https://www.youtube.com/watch?v=EeMCEQa85tw
http://www.incompleteideas.net/IncIdeas/BitterLesson.html


The Answer

Spark scales with available compute!

              is the answer!
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In Reality This Means Rewriting Training Code
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Towards Distribution Transparency

The distribution oblivious training function (pseudo-code):

Inner Loop



Towards Distribution Transparency

• Trial and Error is slow

• Iterative approach is greedy

• Search spaces are usually large

• Sensitivity and interaction of 
hyperparameters

Set Hyper-
parameters

Train ModelEvaluate 
Performance



Sequential Black Box Optimization
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Parallel Search
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Parallel Search
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Which algorithm to use for search? How to monitor progress?

Fault Tolerance?How to aggregate results?

This should be managed with platform support!



Maggy

A flexible framework for 
asynchronous parallel 
execution of trials for ML 
experiments on 
Hopsworks:

ASHA, Random Search, 
Grid Search, 
LOCO-Ablation,
Bayesian Optimization
and more to come…



Synchronous Search
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Add Early Stopping and Asynchronous Algorithms
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Performance Enhancement

Early Stopping:

● Median Stopping Rule

● Performance curve prediction

Multi-fidelity Methods:

● Successive Halving Algorithm

● Hyperband



Asynchronous Successive Halving Algorithm

Animation: https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/
Liam Li et al. “Massively Parallel Hyperparameter Tuning”. In: CoRR abs/1810.05934 (2018). 

https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/


Ablation Studies

PClassname survivesex sexname survive

Replacing the Maggy 
Optimizer with an Ablator:

• Feature Ablation using 
the Feature Store

• Leave-One-Layer-Out 
Ablation

• Leave-One-Component-Out 
(LOCO)



How can we fit this into the bulk synchronous execution model of Spark?
Mismatch: Spark Tasks and Stages vs. Trials

Challenge

Databricks’ approach:  Project Hydrogen (barrier execution mode) & SparkTrials in Hyperopt



The Solution
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Enter Maggy



User API
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Ablation API
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Results
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Conclusions

● Avoid iterative Hyperparameter Optimization

● Black box optimization is hard

● State-of-the-art algorithms can be deployed 

asynchronously

● Maggy: platform support for automated hyperparameter 

optimization and ablation studies

● Save resources with asynchronism

● Early stopping for sensible models



What’s next?

● More algorithms
● Distribution 

Transparency
● Comparability/

reproducibility of 
experiments

● Implicit Provenance
● Support for PyTorch
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• Maggy
https://github.com/logicalclocks/maggy 
https://maggy.readthedocs.io/en/latest/

• Hopsworks
https://github.com/logicalclocks/hopsworks
https://www.logicalclocks.com/whitepapers/hopsworks

• Feature Store: the missing data layer in ML pipelines?
https://www.logicalclocks.com/feature-store/

@hopsworks
HOPSWORKS

https://github.com/logicalclocks/maggy
https://maggy.readthedocs.io/en/latest/
https://www.logicalclocks.com/whitepapers/hopsworks
https://www.logicalclocks.com/feature-store/

