Magic Castle

Terraforming the Cloud for HPC

Félix-Antoine Fortin, FOSDEM20
Why are there more wizards in Harry Potter than in Lord of the Rings?
Context
Education and Training in Compute Canada

- Over 150 workshops / year
- Most workshops use the HPC software environment
- HPC clusters require an account
- Account creation process can take a few days

Could we replicate the HPC environment for training?
So what is the difference between HP and LotR?
So what is the difference between HP and LotR?

Wizardry Schools
“Don’t ever do a software demo longer than 60 seconds. It will not work!”
Sage advice from @HigginsDes at #CarpentryCon2018
CC Wizard: Magic Castle Voice Assistant

Dialogflow

Flask

Magic Castle

openstack
CC Wizard: Magic Castle Voice Assistant

Dialogflow → Flask → Magic Castle
Magic Castle

Open source project that instantiates a Compute Canada cluster replica in any major cloud with Terraform and Puppet

- Create instances
 - Management nodes
 - Login nodes
 - Compute nodes
- Create volumes, network, network acls
- Create certificates, dns records, passwords
- Configuration done via input parameters

https://github.com/computecanada/magic_castle
Terraform

- Tool for building, changing, and versioning infrastructure
- Infrastructure is described using a high-level configuration syntax.
- Create resources that can then be setup by a config management tool.

Puppet

- Config management tool used for deploying, configuring and managing servers.
- Define configurations for each host
- Continuously check whether the required configuration is in place and is not altered
Overview of a Magic Castle Release

*could be any in [aws, azure, gcp, openstack, ovh]
Infrastructure
Overview of a Magic Castle Release

*could be any in [aws, azure, gcp, openstack, ovh]
Architecture - management nodes
Architecture - compute nodes
Overview of a Magic Castle Release

*could be any in [aws, azure, gcp, openstack, ovh]
Magic Castle Terraform Main Module

4 sections

1. Cloud provider selection
2. Infrastructure customization
3. Cloud Provider specifics inputs
4. DNS Configuration (optional)
source = "./provider"
MC Module - 2.1 Infrastructure customization

cluster_name = "fosdem"
domain = "computecanada.dev"
image = "CentOS-7-x64-2019-07"
nb_users = 100
public_keys = [file("~/ssh/id.pub")]
MC Module - 2.2 Instance definition

instances = {
 mgmt = { type = "p4-6gb", count = 1 },
 login = { type = "p2-3gb", count = 1 },
 node = { type = "p2-3gb", count = 1 }
}
MC Module - 2.3 Storage definition

storage = {
 type = "nfs"
 home_size = 100
 project_size = 50
 scratch_size = 50
}
MC Module - 3. Cloud Provider Specific Inputs

Examples:

- OpenStack list of floating ips
- Google GPU attachment for compute nodes
- AWS / Azure / Google Cloud region
MC Module - 4. DNS Configuration (optional)

```
source           = "/dns/cloudflare"
name             = module.provider.cluster_name
domain           = module.provider.domain
email            = "you@example.com"
public_ip        = module.provider.ip
rsa_public_key   = module.provider.rsa_public_key
sudoer_username  = module.provider.sudoer_username
```
Apply Plan

$ terraform apply

Apply complete! Resources: 30 added, 0 changed, 0 destroyed.

Outputs:

admin_username = centos
guest_passwd = **redacted**
guest_usernames = user[01-10]
hostnames = [pirate.calculquebec.cloud, pirate1.calculquebec.cloud]
public_ip = [206.12.90.97]
Challenges: Infrastructure as Code

- Designing the main user interface that would limit the references to a provider specific implementation / API.
- Terraform configuration language tends to favor repetition over re-use of code.
- Regrouping every components that are common amongst providers
Provisioning
Overview of a Magic Castle Release

*could be any in [aws, azure, gcp, openstack, ovh]
Bootstrap Puppet

1. Inject data from TF
2. Upgrade CentOS
3. Install Puppet rpms
4. Configure Puppet certificates
5. Setup host configuration
Provisioning with Puppet and Consul
Challenges: Provisioning

- Every steps of the provisioning need to work without human intervention.
- Once provisioned, the cluster need to stay healthy on itself – users are not necessarily sys admins.
- Provisioning both master and slave services without proper syncing mechanism.
Software
Batteries Included

- FreeIPA
 - Kerberos
 - BIND
 - 389 DS LDAP
- NFS
- Slurm
- Globus Endpoint
- JupyterHub with BatchSpawner
- Compute Canada CVMFS
- LMOD
Compute Canada Software Stack - CVMFS

• CernVM File System (CVMFS) provides a scalable, reliable and low-maintenance software distribution service;
• Compute Canada CVMFS repo:
 ○ 600+ scientific applications
 ○ 4,000+ permutations of version/arch/toolchain
 ○ All compiled with EasyBuild
• Available from anywhere
• PEARC19 paper
Key Takeaways

1. Terraform can be used to build complex things and modules simplify that complexity.
2. Magic Castle is a teaching and development meta-platform for HPC.
Magic Castle Replicates a Compute Canada Cluster in 20 min.
Questions ?