
Designing an ultra low-overhead
multithreading runtime for Nim

Mamy Ratsimbazafy
mamy@numforge.co

Weave
https://github.com/mratsim/weave

Hello!
I am Mamy Ratsimbazafy
During the day blockchain/Ethereum 2 developer (in Nim)
During the night, deep learning and numerical computing
developer (in Nim) and data scientist (in Python)

You can contact me at mamy@numforge.co
Github: mratsim
Twitter: m_ratsim 2

mailto:mamy@numforge.co

Where did this
talk came from?
◇ 3 years ago: started writing a tensor library in

Nim.

◇ 2 threading APIs at the time: OpenMP and simple
threadpool

◇ 1 year ago: complete refactoring of the internals
3

Agenda

◇ Understanding the design space

◇ Hardware and software multithreading:
definitions and use-cases

◇ Parallel APIs

◇ Sources of overhead and runtime design

◇ Minimum viable runtime plan in a weekend
4

Understanding the
design space
Concurrency vs parallelism, latency vs throughput
Cooperative vs preemptive, IO vs CPU

1

5

Parallelism is not
concurrency

6

Kernel threading
models

7

1:1 Threading
1 application thread -> 1 hardware thread

N:1 Threading
N application threads -> 1 hardware thread

M:N Threading
M application threads -> N hardware threads

The same distinctions can be done at a multithreaded language or
multithreading runtime level.

The problem
8

How to schedule M tasks on N hardware
threads?

Latency vs
Throughput

9

- Do we want to do all the work in a minimal amount of
time?

- Numerical computing
- Machine learning
- ...

- Do we want to be fair?
- Clients-server
- Video decoding
- ...

Cooperative vs
Preemptive

10

Cooperative multithreading:
- Coroutines, fibers, green threads, first-class continuations
- Userland, lightweight context switches
- Cannot use hardware threads

Preemptive:
- PThreads (OpenMP, TBB, Cilk, …)
- Scheduled by the OS, heavier context switches
- Need synchronization primitives:

- Locks
- Atomics
- Transactional memory
- Message-passing

IO-tasks vs CPU-tasks
11

IO-tasks:
- Latency optimized
- async/await

CPU-tasks:
- Throughput optimized
- spawn/sync

Doing both in the same runtime is complex:
- Different skills
- Different OS APIs (kqueue, epoll, IOCP vs PThreads, Windows Fiber)
- Different requirements
- Same public APIs/data-structure (async/spawn await/sync, Task, Future)

Focus of the talk
12

- CPU-tasks

- Throughput optimized

- Preemptive scheduling

1001 forms of
multithreading
Hardware vs Software multithreading
Data parallelism, Task parallelism, Dataflow parallelism

2

13

Hardware-level
multithreading

ILP - Instruction-level Parallelism
1 CPU, multiple “execution ports”

SIMD - Single Instruction Multiple Data
a.k.a. Vector instructions (SSE, AVX, Neon)

SIMT - Single Instruction Multiple Thread
GPUs (Warp for Nvidia, Wavefront for AMD)

SIMT - Simultaneous Multithreading
Hyperthreading (2x logical siblings core usually, 4x on Xeon Phi)
Share execution ports, memory bus, caches, ...

14

Data parallelism
Parallel for loop

- Same instructions on multiple data

- OpenMP

- Use-cases
- Vectors, matrices, multi-dimensional arrays and tensors

- Challenges:
- Nested parallelism
- Splitting the loop

- Static splitting
- Eager binary splitting
- Lazy tree splitting

15

Task parallelism
spawn/sync

- “Function call” that may be scheduled on another hardware threads

- Intel TBB (Threads Building Blocks), OpenMP Tasks (since 3.0)

- Use-cases
- Anywhere you want a parallel function call
- Parallel tree algorithms, divide-and-conquer, ...

- Challenges:
- API: futures? (in Nim “Flowvar” to distinguish from IO-tasks futures)
- Synchronization
- Scheduling overhead
- Thread-safe memory management

16

Dataflow parallelism
- Alternative names

- Pipeline parallelism
- Graph parallelism
- Stream parallelism
- Data-driven task parallelism

- OpenMP Tasks with depends “in”, “out”, “inout” clauses
- Intel TBB Flowgraph

- Use-cases: expressing precise data dependencies (beyond barriers)
For example: frame processing in a video encoding pipeline.

- Challenges: API, thread-safe data structure for dependency graphs

17

Parallel APIs3

18

Task parallelism
19

Copy IO-task API “async/await” with different keywords
- async/await => spawn/sync
- Future => Flowvar

Why:
- Reuse knowledge from async/await which is actually applicable
- Different keywords to expose different requirements

Synchronization:
- Channels / Shared memory for data
- Dataflow parallelism for dependency

- Or Barriers with “async/finish” model of Habanero Java
- OpenMP barriers do not work with task parallelism (taskwait

instead).

Data parallelism
20

Parallel for loop
- Start, stop, step (stride)
- Abstraction detail if non-lazy splitting:

- “Grain size”

Why:
- Easier to port decades of OpenMP scientific code

Synchronization:
- Shared memory for data
- Barriers (if not built on top of task parallelism)
- Dataflow parallelism for fine-grained dependencies

Dataflow parallelism
21

No established API

1. Declarative: depends clause in/out/inout
=> OpenMP
Requires a thread-safe hash-table

2. Imperative: pass a “ready” handle between the data producer and the
consumer(s).
=> Strategy used in Weave, the handle is called a Pledge (~Promises with
adapted semantics)
Can be implemented with broadcasting SPMC queues

Sources of overhead
And
“Implementation details”
Characterizing performance of a runtime

4

22

Scheduling overhead
23

Context switching is costly
Context switching to the kernel (syscall, creating threads) is very costly

- At least 200 cycles: 200 additions
- 3GHz = 1 cycle every 0.33 ns
- 1 us = 3000 cycles
- 1 ms = 3 000 000 cycles

- https://gist.github.com/jboner/2841832
“Latency Numbers Every Programmer Should Know”

Don’t create/destroy threads, use a threadpool and have threads sleep

Memory overhead
24

Task parallelism might generates billions or trillions of tasks and futures

- Access from multiple threads:
- Heap allocation
- Threadsafe allocation/deallocation

- Challenges
- Large number of tasks (fibonacci)
- Producer-Consumer workloads

 Lead to task cache imbalance

Memory overhead
25

Credits: Angelina Lee

Memory overhead
26

Zoom on cactus stacks / segmented stacks
https://github.com/mratsim/weave/blob/v0.3.0/weave/memory/multithreaded_
memory_management.md

- Plagued Go and Rust (abandoned)
- Decades of research including OS kernel forks, mmap changes

- A cactus stack is a memory abstraction
- That deals with thread memory/variable concurrent views
- Challenges:

- heap fragmentation
- serial/parallel reciprocity / calling convention
- Scalability (TBB is depth-restricted and does not scale on

certain workloads)
- Practical solutions for passing task inputs

- coroutines/continuation (save/restore a “task frame”)
- capturing inputs by value and saving in the task

Load Balancing
27

Simple threadpool
- One global task queue
- Dispatch task to a ready thread

=> Contention

The best way to scale a parallel program is to share nothing

Load Balancing
28

Amdahl’s Law

Load Balancing
29

Sources of serialization
- Shared memory access (be it locks or atomics)
- Single task queue
- Single memory pool

=> Distribute on N threads

Load Balancing
30

Work-stealing
Image credits: Yangjie Cao

Load Balancing
31

Work-stealing

1 deque per worker
- Enqueue locally created tasks at the head
- Dequeue tasks at the head

- Improve locality
- Steal in other workers from the tail

- Synchronization only on empty deque
- Mathematical proof of optimality
- Papers (including C/C++ implementation and proof)

- Chase, Lev
- Arora, Blumofe and Plaxton (non-blocking)
- Lê, Pop, Cohen, Nardelli (weak memory models)

Alternative: Parallel Depth-First Scheduling (Julia), steal from the head.

Parenthesis on
memory models

32

Memory models:
- The semantics of threads reading and writing the same memory

location
- Specification of “happens-before” relationship

- Disable compiler reordering
- Forces memory invalidation at the hardware level

- Goal: have a lock-less program be sequentially consistent
- “Relaxed”, “Acquire”, “Release”, “Acquire-Release”, “Sequentially

Consistent” atomics

- C++11 is dominant (used in Rust, Nim, …).
Watch Herb Sutter talk “atomic<> Weapons: The C++ Memory Model and
Modern Hardware”
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-mod
el-and-modern-hardware/

Load Balancing
33

Adaptative work-stealing
- Steal-one strategy
- Steal-half strategy
- Adaptative

Public vs Private vs Hybrid deques
- Public deques are constrained by push/pop/steal/steal-half

- Steal requests are implicit and have very low-overhead
- Thieves can check if a victim deque is empty
- They don’t work in a distributed setting

- Private deques can implement very complex strategies
- Steal requests are explicit data structure like tasks
- Thieves are “blind”
- They work in distributed settings

Work-stealing runtime
In a weekend5

34

Minimal viable
runtime

Task data structure
- Function pointer +

blob for task
inputs or a closure

- start/stop/step (for
data parallelism)

- prev/next field for
intrusive
queues/deques

- Future pointer

Work-stealing deque
- head/tail
- pushFirst
- popFirst
- stealLast

35

API
- init
- exit
- spawn/sync

References
Weave design

- https://github.com/mratsim/weave (several markdown design files)
- https://github.com/mratsim/weave/tree/v0.3.0/benchmarks
- https://github.com/mratsim/weave/tree/v0.3.0/weave/memory

- RFC: https://github.com/nim-lang/RFCs/issues/160

Research
- https://github.com/numforge/laser/blob/master/research/runtime_thr

eads_tasks_allocation_NUMA.md
- Runtimes, NUMA, CPU+GPU computing, distributed computing

36

https://github.com/mratsim/weave
https://github.com/mratsim/weave/tree/v0.3.0/benchmarks
https://github.com/numforge/laser/blob/master/research/runtime_threads_tasks_allocation_NUMA.md
https://github.com/numforge/laser/blob/master/research/runtime_threads_tasks_allocation_NUMA.md

Designing an ultra low-overhead
multithreading runtime for Nim

Mamy Ratsimbazafy
mamy@numforge.co

Weave
https://github.com/mratsim/weave

