Designing an ultra low-overhead multithreading runtime for Nim

Mamy Ratsimbazafy
mamy@numforge.co

Weave
https://github.com/mratsim/weave
Hello!

I am Mamy Ratsimbazafy
During the day blockchain/Ethereum 2 developer (in Nim)
During the night, deep learning and numerical computing developer (in Nim) and data scientist (in Python)

You can contact me at mamy@numforge.co
Github: mratsim
Twitter: m_ratsim
Where did this talk come from?

- 3 years ago: started writing a tensor library in Nim.
- 2 threading APIs at the time: OpenMP and simple threadpool
- 1 year ago: complete refactoring of the internals
Agenda

- Understanding the design space
- Hardware and software multithreading: definitions and use-cases
- Parallel APIs
- Sources of overhead and runtime design
- Minimum viable runtime plan in a weekend
1

Understanding the design space

Concurrency vs parallelism, latency vs throughput
Cooperative vs preemptive, IO vs CPU
Parallelism is not concurrency.

Concurrent = Two Queues One Coffee Machine

Parallel = Two Queues Two Coffee Machines

© Joe Armstrong 2013
Kernel threading models

1:1 Threading
1 application thread -> 1 hardware thread

N:1 Threading
N application threads -> 1 hardware thread

M:N Threading
M application threads -> N hardware threads

The same distinctions can be done at a multithreaded language or multithreading runtime level.
The problem

How to schedule \(M \) tasks on \(N \) hardware threads?
Latency vs Throughput

- Do we want to do all the work in a minimal amount of time?
 - Numerical computing
 - Machine learning
 - ...

- Do we want to be fair?
 - Clients-server
 - Video decoding
 - ...
Cooperative vs Preemptive

Cooperative multithreading:
- Coroutines, fibers, green threads, first-class continuations
- Userland, lightweight context switches
- Cannot use hardware threads

Preemptive:
- PThreads (OpenMP, TBB, Cilk, ...)
- Scheduled by the OS, heavier context switches
- Need synchronization primitives:
 - Locks
 - Atomics
 - Transactional memory
 - Message-passing
IO-tasks vs CPU-tasks

IO-tasks:
- Latency optimized
- async/await

CPU-tasks:
- Throughput optimized
- spawn/sync

Doing both in the same runtime is complex:
- Different skills
- Different OS APIs (kqueue, epoll, IOCP vs PThreads, Windows Fiber)
- Different requirements
- Same public APIs/data-structure (async/spawn await/sync, Task, Future)
Focus of the talk

- CPU-tasks
- Throughput optimized
- Preemptive scheduling
1001 forms of multithreading

Hardware vs Software multithreading
Data parallelism, Task parallelism, Dataflow parallelism
Hardware-level multithreading

ILP - Instruction-level Parallelism
1 CPU, multiple “execution ports”

SIMD - Single Instruction Multiple Data
a.k.a. Vector instructions (SSE, AVX, Neon)

SIMT - Single Instruction Multiple Thread
GPUs (Warp for Nvidia, Wavefront for AMD)

SIMT - Simultaneous Multithreading
Hyperthreading (2x logical siblings core usually, 4x on Xeon Phi)
Share execution ports, memory bus, caches, ...
Data parallelism

Parallel for loop
- Same instructions on multiple data
- OpenMP

Use-cases
- Vectors, matrices, multi-dimensional arrays and tensors

Challenges:
- Nested parallelism
- Splitting the loop
 - Static splitting
 - Eager binary splitting
 - Lazy tree splitting
Task parallelism

spawn/sync
- “Function call” that may be scheduled on another hardware threads
- Intel TBB (Threads Building Blocks), OpenMP Tasks (since 3.0)

- Use-cases
 - Anywhere you want a parallel function call
 - Parallel tree algorithms, divide-and-conquer, ...

- Challenges:
 - API: futures? (in Nim “Flowvar” to distinguish from IO-tasks futures)
 - Synchronization
 - Scheduling overhead
 - Thread-safe memory management
Dataflow parallelism

- Alternative names
 - Pipeline parallelism
 - Graph parallelism
 - Stream parallelism
 - Data-driven task parallelism

- OpenMP Tasks with depends “in”, “out”, “inout” clauses
- Intel TBB Flowgraph

- Use-cases: expressing precise data dependencies (beyond barriers)
 For example: frame processing in a video encoding pipeline.

- Challenges: API, thread-safe data structure for dependency graphs
Parallel APIs
Task parallelism

Copy IO-task API “async/await” with different keywords
- async/await => spawn/sync
- Future => Flowvar

Why:
- Reuse knowledge from async/await which is actually applicable
- Different keywords to expose different requirements

Synchronization:
- Channels / Shared memory for data
- Dataflow parallelism for dependency
 - Or Barriers with “async/finish” model of Habanero Java
 - OpenMP barriers do not work with task parallelism (taskwait instead).
Data parallelism

Parallel for loop
- Start, stop, step (stride)
- Abstraction detail if non-lazy splitting:
 - “Grain size”

Why:
- Easier to port decades of OpenMP scientific code

Synchronization:
- Shared memory for data
- Barriers (if not built on top of task parallelism)
- Dataflow parallelism for fine-grained dependencies
Dataflow parallelism

No established API

1. Declarative: depends clause in/out/inout
 => OpenMP
 Requires a thread-safe hash-table

2. Imperative: pass a “ready” handle between the data producer and the consumer(s).
 => Strategy used in Weave, the handle is called a Pledge (~Promises with adapted semantics)
 Can be implemented with broadcasting SPMC queues
Sources of overhead
And
“Implementation details”

Characterizing performance of a runtime
Scheduling overhead

Context switching is costly

Context switching to the kernel (syscall, creating threads) is very costly

- At least 200 cycles: 200 additions
 - 3GHz = 1 cycle every 0.33 ns
 - 1 us = 3000 cycles
 - 1 ms = 3 000 000 cycles

- https://gist.github.com/jboner/2841832
 “Latency Numbers Every Programmer Should Know”

Don’t create/destroy threads, use a threadpool and have threads sleep
Memory overhead

Task parallelism might generates billions or trillions of tasks and futures

- Access from multiple threads:
 - Heap allocation
 - Threading safe allocation/deallocation

- Challenges
 - Large number of tasks (fibonacci)
 - Producer-Consumer workloads

Lead to task cache imbalance
Memory overhead

A cactus stack supports multiple views in parallel.

* Cactus stacks were supported directly in hardware by the Burroughs B6500 / B7500 computers [HD68].

Credits: Angelina Lee
Memory overhead

Zoom on cactus stacks / segmented stacks

https://github.com/mratsim/weave/blob/v0.3.0/weave/memory/multithreaded_memory_management.md

- Plagued Go and Rust (abandoned)
- Decades of research including OS kernel forks, mmap changes
 - A cactus stack is a memory abstraction
 - That deals with thread memory/variable concurrent views
 - Challenges:
 - heap fragmentation
 - serial/parallel reciprocity / calling convention
 - Scalability (TBB is depth-restricted and does not scale on certain workloads)
- Practical solutions for passing task inputs
 - coroutines/continuation (save/restore a “task frame”)
 - capturing inputs by value and saving in the task
Simple threadpool
- One global task queue
- Dispatch task to a ready thread

=> Contention

The best way to scale a parallel program is to share nothing
Load Balancing

Amdahl’s Law

![Amdahl's Law Graph](image-url)
Load Balancing

Sources of serialization
- Shared memory access (be it locks or atomics)
- Single task queue
- Single memory pool

=> Distribute on N threads
Load Balancing

Work-stealing

Image credits: Yangjie Cao
Load Balancing

Work-stealing

1 deque per worker
- Enqueue locally created tasks at the head
- Dequeue tasks at the head
 - Improve locality
- Steal in other workers from the tail
 - Synchronization only on empty deque
- Mathematical proof of optimality
- Papers (including C/C++ implementation and proof)
 - Chase, Lev
 - Arora, Blumofe and Plaxton (non-blocking)
 - Lê, Pop, Cohen, Nardelli (weak memory models)

Alternative: Parallel Depth-First Scheduling (Julia), steal from the head.
Parenthesis on memory models

Memory models:
- The semantics of threads reading and writing the same memory location
- Specification of “happens-before” relationship
 - Disable compiler reordering
 - Forces memory invalidation at the hardware level
- Goal: have a lock-less program be sequentially consistent
 - “Relaxed”, “Acquire”, “Release”, “Acquire-Release”, “Sequentially Consistent” atomics
- C++11 is dominant (used in Rust, Nim, ...).

Watch Herb Sutter talk “atomic<> Weapons: The C++ Memory Model and Modern Hardware”
Adaptative work-stealing
- Steal-one strategy
- Steal-half strategy
- Adaptative

Public vs Private vs Hybrid deques
- Public deques are constrained by push/pop/steal/steal-half
 - Steal requests are implicit and have very low-overhead
 - Thieves can check if a victim deque is empty
 - They don’t work in a distributed setting
- Private deques can implement very complex strategies
 - Steal requests are explicit data structure like tasks
 - Thieves are “blind”
 - They work in distributed settings
Work-stealing runtime
In a weekend
Minimal viable runtime

Task data structure
- Function pointer + blob for task inputs or a closure
- start/stop/step (for data parallelism)
- prev/next field for intrusive queues/deques
- Future pointer

Work-stealing deque
- head/tail
- pushFirst
- popFirst
- stealLast

API
- init
- exit
- spawn/sync
References

Weave design
- https://github.com/mratsim/weave (several markdown design files)
 - https://github.com/mratsim/weave/tree/v0.3.0/benchmarks
 - https://github.com/mratsim/weave/tree/v0.3.0/weave/memory
- RFC: https://github.com/nim-lang/RFCs/issues/160

Research
 - Runtimes, NUMA, CPU+GPU computing, distributed computing
Designing an ultra low-overhead multithreading runtime for Nim

Mamy Ratsimbazafy
mamy@numforge.co

Weave
https://github.com/mratsim/weave