

dav1d, 1 year later

Jean-Baptiste Kempf

0202-2020

Who am I?

President of VideoLAN

Work/Manage VLC, x264, FFMpeg, dav1d

Other multimedia projects

VP9++?

- VP9 is a semi-failure
- Good format, royalties OK
- Rarely used
 - Have you ever watched an anime rip in VP9?
 - Spec?
- YT, Netflix

AV1

- Different from just VP10
- AOM, Mozilla, Cisco
- Excellent results

AV1 ecosystem

- Numerous encoders
 - libaom, SVT-AV1, rav1e
 - EVE-AV1, Ateme, Harmonic, Bitmovin
 - Ngcodec, FPGA, ...
- Numerous deployments
 - Youtube, Netflix, Facebook
 - Cloud vendors
- Hardware is coming in 2020
 - Intel, nVidia, AMD?
 - Samsung TV, Amlogic, Broadcom

VVC, EVC

- Competion is coming?
 - VVC in July 2020, EVC in April 2020
 - MPEG-5 LC-EVC
 - AV2???
- Royalties
 - VVC is based on HEVC
 - 5 patent pools? :D
 - Are improvements enough to justify?
 - HEVC semi-failure
 - EVC is not enough
 - Gains?
 - MC-IF
 - LC-EVC is not actually a codec

Dav1d

Dav1d goals

- "AV1 needs a great software decoder"
- Faster decoder everywhere
- Very portable and cross-platform
- Small binary size (ffvpg)

Launched last year

- Announced at VDD 2018
- First release in december 2018
- Last release: 0.5.2, 0.6.0 soon

- Oct '18 Announce
- Dec '18 0.1 4x faster than libaom on x64
- Mar '19 0.2 2x faster than libaom on ARM64, 4x on ARM32, 5x on x64
- *May '19* **0.3** Focus on SSSE3 (+25%), ARM (+12%)
- Aug '19 0.4 Bugs, MSAC, RAM usage, VSX
- Oct '19 0.5 Finish ARM64, SSSE3
- Dec '19 **0.5.2** SSE2, ARM32

Fast on desktop

dav1d vs aomdec multi-thread performance

aomdec 2019-Sep-15 dav1d 0.5.0

8

Complexity of AV1

- Dual Passes
 - Rare inside a decoder
 - First pass to analyze, Second to decode
- Dual Threading model
 - Tile Thread
 - Frame Thread
 - Need to set both to get best decoding

Why is dav1d faster?

1. C version is faster

AV1 Decode Performance (Single Threaded ARMv8 64-bit)

Why is dav1d faster?

2. Threading is better

13

Threads

Why is dav1d faster?

3. low-level development

Programming languages used in this repository

Measured in bytes of code. Excludes generated and vendored code.

C (no C++ overhead) Hand-written asm

No intrinsics

Assembly	56.08 %
• c	42.78 %
 Meson 	0.84 %
O C++	0.15 %
Objective-C	0.14 %

ASM aware code

- MSAC
- Inverse Transform
- Motion Compensation
- Intra Pred
- Loopfilter
- Loop Restoration
- CDEF
- Film Grain

Non-ASM code

- Decode_coef (8%)
- Ref_mv (12%)
- Decode

dav1d

	AVX-2	SSSE-3 32 + 64bit	ARM64	ARM32
MSAC	\rightarrow	Only SSE2	Yes	No
Inverse Transform	Yes	Yes	Yes	No
Motion Compensation	Yes	Yes Warp SSE2	Yes emu_edge	Yes emu_edge
Intra Pred	Yes z1, z2, z3	Yes	Yes z1, z2, z3	Partial
Loopfilter	Yes	Yes	Yes	Yes
Loop Restoration	Yes	Yes Wiener SSE2	Yes	Yes
CDEF	Yes	Yes + SSE2	Yes	Yes
Film Grain	Yes Except 4:4:4	Yes	No	No

X264, libavcodec

• x264

- 68kLoC **C**
- 37kLoC asm (25k x86, 12k ARM)
- libavcodec
 - 540 kLoC **C**
 - 80 kLoC asm (40k x86, 40k ARM)
- dav1d
 - 25 kLoC **C**
 - 64 kLoC **asm** (45k x86, 19k ARM)

Programming languages used in this repository

Measured in bytes of code. Excludes generated and vendored code.

Next: GPU

GSoC 2019: GPU optimizations

- Vulkan Shaders
- Android only

Done:

- Loop Restoration (SGR, Wiener)
- CDEF
- Film Grain in GLSL

Future:

• Finish?

Android VLC 3.3.0-dev (20191021) - 4K av1 local playback, Huawei P20

Future

Future

- 10bit
 - 16bit
 - ARM64/ARM32 ongoing
 - X86 ??
- GPGPU

hanks