// \\

RAPTORJIT

a fast, dynamic systems programming language

Max Rottenkolber
maxa@mr.gy
@eugenela_

Hello, World!

Hi, 'm Max <max@mr.gy>.
Open source systems hacker

Currently dabbling in high-performance networking applications

- .

RAPTORJIT

Lua

Simple, minimalistic, high-level language,
Schemeish semantics, Pascalesque syntax

First class functions, multiple return values, prototype OOP
Central data structure: table (sparse array/hash map hybrid)

Canonical implementation: PUC Lua (simple, embeddable
interpreter) =2/~

RAPTORJIT

Lua

local function hello (name)
return "Hello, "..name..
end

function greet (name, greeting)
greeting = greeting or hello
print(greeting(name or "World"))
end

_—— e

RAPTORJIT

LualJIiT

Implements a dialect of Lua (5.1%2 + goodies)

Strong JIT compiller, efficient implementation (performance
competetive with C)

Can express close-to-the-metal programs (hative C data access)

Good language for systems programming? =/
RAPTORJIT

LualJiT

local p = ffi.new [[struct {
uintl6e_t Llength;
char data[10000];

F]

local msg = "Hello, World"

p.length = math.min(#msg, ffi.sizeof(p.data))

ffi.copy(p.data, msg, p.length) —

RAPTORJIT

RaptorJIT

Fork of LuaJIT. Goal: to be a really good systems language
Simplify implementation, improve maintainablility
mprove JIT for heavy duty server applications (eliminate

oerformance pitfalls, unexpected JIT behavior,
orovide more reliable performance)

Add features (zero-overhead profiler, introspection tools, — =
+ many more to come?) RAPTORJIT

Simplify and Maintain

 Big bang: Remove all the features that | can live without
#5 by lukego was merged on Mar 12, 2017

Removed support for all architectures except x86_64, Windows,
32-bit heap, ..

Got rid of a TONNE of #ifdefs

Cut code to maintain by ~50% =\ /=
RAPTORJIT

Simplify and Maintain

LuaJIT interpreter used to be handwritten assembly for each

supported architecure.
i1 WIP: Max’s C VM branch v

\X/e a[most Completed rewriting the #254 opened on Jun 5, 2019 by eugeneia

iInterpreter in C (easier to port, easier to change!)

Rationale: we spent 99% of time in compiled code, no use for an

overly optimized interpreter =\ /=
RAPTORJIT

Simplify and Maintain

|_str.c: Remove special-case string interning fast-path
#150

}c Merged Iukego merged 1 commit into raptorjit:master from lukego:reoptimize-string-intern @- onJan 15, 2018

ﬁr
- ~

RAPTORJIT

Simplify and Maintain

"Fast-path” bad because:

- tricky custom memcmp routine that needs to be maintained

- slower than "slow-path” (stock memcmp on modern Linux/x86)
- confusing performance behavior: totally unrelated memory

allocation could bias an important buffer towards the “fast-path’

and iImpact overall performance A\ /=
RAPTORJIT

Simplify and Maintain

"The fast-path code was written in 2010 and a lot has
happened since then [..I. | think the optimization had
simply bit-rotted.”

RAPTORJIT

Hacking the JIT

LualIT acts as a "best-effort for all use cases” drop-in replacement
for PUC Lua. (Fast JIT, when it fails it drops into fast interpreter, huge
to solid gains in any case.)

Can we do better for a narrowed use-case?

- .

RAPTORJIT

Hacking the JIT

TN

interpret > branch > record
trace
inot hot
increment
hotcount =\/=

RAPTORJIT

Hacking the JIT

Don't treat the compiler as a black box gifted from a geni(e/ous)!

Study and understand the JIT
Formulate design goals & implement them

® IAF: Where can a trace end? Why? IAF
#103 opened on Sep 9, 2017 by lukego

@ 1AF: What is the difference between a root trace and a side trace? IAF

#99 opened on Sep 5, 2017 by lukego

® Goal: Avoid "high-impact medium-generality" optimizations (2}
#148 opened on Dec 22, 2017 by lukego "/;\ /\\‘
RAPTORJIT

Hacking the JIT

LuaJIT aggressively blacklists codepaths that it fails to compile
(Good for short running programs, bad for server applications.)

RaptorJIT spends more effort to find traces and provide stable,
oredictable performance needed for heavy duty server apps.

- .

RAPTORJIT

Hacking the JIT

JIT heuristic updates for stable performance
lexperimental] #101

S GCECl lukego merged 4 commits intO raptorjit:master from 1lukego:long-running-stable e on Dec 11, 2017

—=\/=
- .

RAPTORJIT

Hacking the JIT

LuaJIT doesn't consider the time domain when selecting traces
(Causes new traces to be compiled long after initial warmuyp for

code that really isn't hot at all!

Maybe RaptorJIT should only compile code that is actually
executed frequently?

I [draft] Ij_trace.c: clear all hotcounts every second v

#260 opened on Oct 9, 2019 by eugeneia —=\/=
RAPTORJIT

New Features

Replaced LuallT profiler with low-overhead, "always on" trace
orofiler and Auditlog (flight recorder).

Created an interactive tool (Studio) to help understand

trace and profile data.

- .

RAPTORJIT

~ - o Inspector on a ByteString (‘with import <studio>;)
a R|ITProcess
Trace List Trace Map VM Profile Events Items Raw Meta
Profiler datasets (VMProfile)
Profile - Samples Mcode WM | GC
appsintel_mpintel_mp 5099 99.9% 0.1% 0.0%
appsipv4.arp 910 99.9% 0.1% 0.0%
appsipv4.echo 567 100.0% 0.0% 0.0%
apps.ipv4.fragment 620 99.8% 02% 0.0%
appsipv4reassemble 37207 125% 718% 157%
appsipv6.echo 640 100.0% 0.0% 0.0%
appsipv6.fragment 1470 100.0% 0.0% 0.0%
appsipvb.reassemble 599 97.7% 23% 0.0%
appsiwaftriwaftr 11678 97.7% 0.1% 22%
appsiwaftrndp 1029 97.2% 23% 0.5%
engine 1858 792% 206% 02%
program 0 - -
Source code locations of root traces that are hot in the selected profile
Location Samples Mcode VM GC #Root #Side
(app)breathe:14 (core/applua:590) 32523 00% 821% 17.9%9 25
(Ink)receive:l (core/ink lua:48) 1575 996% 00% 04% 1 0
(ib)htons:1 (core/liblua:379) 1108 100.0% 00% 0.0% 1 0
(counter)add:1 (core/counterjua9l) 1091 99.0% 03% 07% 4 7
(reassemble)ipv4_packet_has_valid_length:1 (apps/ipv4/870 100.0% 0.0% 0.0% 1 0
(app)with_restart1 (core/applua:128) 18 778% 222% 00% 5 4
(alarms)Alarm:check:1 (lib/yang/alarms.ua:691) 9 100.0% 00% 00% 1 0
(alarms)Encoderuint32:1 (ib/ptree/alarmslua:77) 8 00% 75.0% 25.0%1 1
(app)now:1 (core/applua:121) 4 00% 100.0%0.0% 2 4
(Ink)nreadable:1 (core/link Jua:86) 1 00% 100.0%0.0% 1 1
Root traces starting at selected location (and their side-traces as children)
Trace ‘Samples Link Mcode VM ' GC Start line |Stop line
98 32521 htelp 0.0% 821% 179% (app)breathe:15 (core/applua:591) -
* 91 2 loop 0.0% 100.0% 0.0% (app)breathe:l5 (core/applua:591) -
97 0 ->56 - - - (app)breathe:l5 (core/applua:591)
143 0 ->116- - - (reassemble)Reassemblerpush:14 (appsfva/reassembk
174 0 ->116- - - (ink)nreadable:3 (core/ink Jua:88) -
+ 87 0 loop - - - (app)breathe:15 (core/applua:591) -
* 96 0 =63 - - - (app)breathe:15 (core/applua:591)

a

e =

RAPTORJIT

#2 sload T #0 sload
conv add +1 fload |func.env
le/ /|| ™+100 || fload |tab.hmask fload |tab.node | fload |tab.meta
eq \+63\ hrefk X' eq NULL
hstore
OP:
conv +1
hstore le +100

o U A,
=/

RAPTORJIT

New Features

Lot's of experimentation (open to evolving the language)

Add jit.tracebarrier() primitive #116

~ Merged lukego merged 2 commits INtO raptorjit:master from 1lukego:jit-tracebarrier @- on Nov 7, 2017

Add jit.unlikely() primitive #143

[WEe Ll lukego wants to merge 1 commit into raptorjit:master from 1lukego:trace-unlikely [a

Add jit.seal(tab) primitive (early version) #151
lukego wants to merge 1 commit into raptorjit:master from lukego:sealed [;\/:\:'

RAPTORJIT

New Features

® Problem: Expensive heap-allocated boxes for 64-bit values (integers and pointers)

#91 opened on Aug 21, 2017 by lukego

1 [WIP] Development branch for 96-bit VM
#199 opened on Nov 25, 2018 by lukego

64-bit values don't fit into the VM's 64-bit tagged words.

If they did, that would simplify a lot of things! =\ /=

RAPTORJIT

Future Goals

® [literature] Incremental Dynamic Code Generation with Trace Trees [[oaidd
#219 opened on Jan 16, 2019 by lukego

A weakness of LuaJlT are loops with unbiased branches

In this paper the authors claim to solve that problem.
We'd love to solve it for RaptorJIT!

- .

RAPTORJIT

(® Goal: Safe FFI memory access

Future Goals

#156 opened on Feb 1, 2018 by lukego

All (FFI) type information is available at runtime, and the JIT Is

really good at hoisting/eliminating guards/checks.

We want to try to provide memory safety for operations

on C data by default!

- .

RAPTORJIT

Get Involved!?

https://github.com/RaptorJIT/RaptorJiT

// \\

RAPTORJIT

