Building Loosely-coupled RISC-V Accelerators
Using Chisel/FIRRTL to build accelerator templates and collateral for the ESP SoC platform

Schuyler Eldridge

2020-02-01
Why Accelerators?

The Golden Age of Computer Architecture is about Accelerators (Assuming you don’t hit the Accelerator Wall...¹)

Figure 1: 50 Years of Process Performance (Measured as SPECInt Score)

¹Fuchs, A. and Wentzlaff, D., *The accelerator wall: Limits of chip specialization*, 2019
Accelerator Types: Tightly vs. Loosely-coupled

Figure 2: A type hierarchy of accelerators
Loosely-coupled: Config, Read, Compute, Write

Figure 3: Waveform showing loosely-coupled accelerator timing\(^2\)

\(^2\)Waveform generated using Wavedrom (github.com/wavedrom/wavedrom)
ESP Capabilities

■ Bring your own accelerator in any language
■ Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip
ESP Capabilities

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

Clarifications
Embedded Scalable Platform (ESP) Accelerator “API”

ESP Capabilities

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

Clarifications

- How is ESP made aware of the accelerator? (An XML file)
ESP Capabilities

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

Clarifications

- How is ESP made aware of the accelerator? (An XML file)
- How does the user know what to write? (An example module)
Example: “AdderAccelerator”

Figure 4: ESP Accelerator Socket
Just Code It Up in ((System)?Verilog)|VHDL

Taylor, M. B., Basejump stl: Systemverilog needs a standard template library for hardware design, 2018

© 2020 IBM Corporation
Just Code It Up in ((System)?Verilog)|VHDL

SystemVerilog is hard to use to build libraries.

Taylor, M. B., *Basejump STL: SystemVerilog needs a standard template library for hardware design*, 2018

© 2020 IBM Corporation
SystemVerilog is hard to use to build libraries.

3 Taylor, M.B., *Basejump stl: Systemverilog needs a standard template library for hardware design*, 2018

IBM
SystemVerilog is *hard* to use to build libraries.\(^3\)

\(^3\)Taylor, M.B., *Basejump stl: Systemverilog needs a standard template library for hardware design*, 2018
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

1. Parametric
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

1. Parametric
2. Parametric Polymorphic
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

1. Parametric
2. Parametric Polymorphic
3. First Class Functions
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

- Parametric
- Parametric Polymorphic
- First Class Functions
- Functional Programming
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

- Parametric
- Parametric Polymorphic
- First Class Functions
- Functional Programming
- Object-oriented Programming
Enter Chisel/FIRRTL

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

- Parametric
- Parametric Polymorphic
- First Class Functions
- Functional Programming
- Object-oriented Programming

Figure 5: Chisel/FIRRTL Verilog compilation
Figure 6: Chisel Website
trait Specification {
 /** Accelerator Config */
 def config: Config
}

abstract class Implementation extends Module with Specification {

 /** Accelerator Name */
 def implementationName: String
}

Figure 7: Composition of an ESP accelerator

An ESP accelerator is composed of an Implementation and a Specification.

\(^4\)github.com/IBM/esp-chisel-accelerators
trait AdderSpec extends Specification {

override lazy val config = Config(
 name = "AdderAccelerator",
 description = "Reduces a vector via addition",
 memoryFootprintMiB = 1,
 deviceId = 0xF,
 param = Array(
 Parameter(name = "readAddr"),
 Parameter(name = "size"),
 Parameter(name = "writeAddr")
)
)

}
class Adder extends Implementation with AdderSpec {

 override val implementationName = "AdderAccelerator"

 /** Implement me! */
}

Canned Demo

sbt run
tree build
build
 `-- AdderAccelerator
 |-- AdderAccelerator_Default_dma32
 | |-- AdderAccelerator_AdderAccelerator_dma32.anno.json
 | |-- AdderAccelerator_AdderAccelerator_dma32.fir
 | `-- AdderAccelerator_AdderAccelerator_dma32.v
 `-- AdderAccelerator.xml

Figure 8: ESP Chisel Accelerators Flow
<sld>
 <accelerator name="AdderAccelerator"
 desc="Reduces a vector via addition"
 data_size="1" device_id="15">
 <param name="readAddr"/>
 <param name="size"/>
 <param name="writeAddr"/>
 </accelerator>
</sld>
Wrapping Up

Current esp-chisel-accelerators
CounterAccelerator("helloworld")
AdderAccelerator
FFTAccelerator

Future Work
Additional collateral generation including:
Basic bare metal and Linux test programs
Drivers
New accelerators

5https://github.com/grebe/ofdm
Wrapping Up

Current esp-chisel-accelerators

- CounterAccelerator ("hello world")
- AdderAccelerator
- FFTAccelerator

5https://github.com/grebe/ofdm
Wrapping Up

Current esp-chisel-accelerators

- CounterAccelerator (“hello world”)
- AdderAccelerator
- FFTAccelerator

Future Work

- Additional collateral generation including:
 - Basic bare metal and Linux test programs
 - Drivers
- New accelerators

5https://github.com/grebe/ofdm
More Info

- ESP ... github.com/sld-columbia/esp
 - Chisel Accelerators github.com/IBM/esp-chisel-accelerators
- Chisel3 github.com/freechipsproject/chisel3
 - Twitter ... @chisel_lang
- FIRRTL github.com/freechipsproject/firrtl

Figure 9: github:@seldridge
Acknowledgments

The research reported in this talk was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. government.

Distribution Statement A: Approved for public release, distribution unlimited.