

Building Loosely-coupled RISC-V Accelerators

Using Chisel/FIRRTL to build accelerator templates and collateral for the ESP SoC platform

Schuyler Eldridge

2020-02-01

The Golden Age of Computer Architecture is about Accelerators (Assuming you don't hit the Accelerator Wall...¹)

Figure 1: 50 Years of Process Performance (Measured as SPECInt Score)

¹Fuchs, A. and Wentzlaff, D., *The accelerator wall: Limits of chip specialization*, 2019

Figure 2: A type hierarchy of accelerators

Loosely-coupled: Config, Read, Compute, Write

Figure 3: Waveform showing loosely-coupled accelerator timing²

²Waveform generated using using Wavedrom (github.com/wavedrom/wavedrom)

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

Clarifications

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

Clarifications

How is ESP made aware of the accelerator? (An XML file)

- Bring your own accelerator in any language
- Accelerator can be easily integrated with a Leon3 or Ariane System-on-Chip

Clarifications

- How is ESP made aware of the accelerator? (An XML file)
- How does the user know what to write? (An example module)

Figure 4: ESP Accelerator Socket

³Taylor, M.B., *Basejump stl: Systemverilog needs a standard template library for hardware design*, 2018

SystemVerilog is hard to use to build libraries.³

³Taylor, M.B., *Basejump stl: Systemverilog needs a standard template library for hardware design*, 2018

- Chisel is a Scala hardware DSL
- FIRRTL is a circuit IR and an optimizing circuit compiler

Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an optimizing circuit compiler

- Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an antimizing circuit compiler
 - optimizing circuit compiler

Language Power

1 Parametric

Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an optimizing circuit compiler

- 1 Parametric
- 1 Parametric Polymorphic

- Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an
 - optimizing circuit compiler

- 1 Parametric
- 1 Parametric Polymorphic
- First Class Functions

Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an optimizing circuit compiler

- 1 Parametric
- **1** Parametric Polymorphic
- First Class Functions
- Functional Programming

IBM

- Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an
 - optimizing circuit compiler

- 1 Parametric
- 1 Parametric Polymorphic
- First Class Functions
- Functional Programming
- Object-oriented Programming

Chisel is a Scala hardware DSL
 FIRRTL is a circuit IR and an optimizing circuit compiler

Language Power

- 1 Parametric
- 1 Parametric Polymorphic
- First Class Functions
- Functional Programming
- Object-oriented Programming

Figure 5: Chisel/FIRRTL Verilog compilation

chisel-lang.org

Chisel3 Testers ChiselTest FIRRTL Treadle Diagrammer Community

Figure 6: Chisel Website

Schuyler Eldridge - Building Loosely-coupled RISC-V Accelerators


```
trait Specification {
   /** Accelerator Config */
   def config: Config
}
```

```
abstract class Implementation
  extends Module
  with Specification {
```


Figure 7: Composition of an ESP accelerator

```
/** Accelerator Name */
def implementationName: String
}
```

An ESP accelerator is composed of an Implementation and a Specification.

⁴github.com/IBM/esp-chisel-accelerators

trait AdderSpec extends Specification {

```
override lazy val config = Config(
  name = "AdderAccelerator".
  description = "Reduces a vector via addition",
  memorvFootprintMiB = 1.
  deviceId = O \times F.
  param = Arrav(
    Parameter( name = "readAddr" ).
    Parameter( name = "size" ),
    Parameter( name = "writeAddr" )
```

ş

class Adder extends Implementation with AdderSpec {

override val implementationName = "AdderAccelerator"

```
/** Implement me! */
}
```

Canned Demo

Figure 8: ESP Chisel Accelerators Flow

<sld>

⁵https://github.com/grebe/ofdm

Current esp-chisel-accelerators

- CounterAccelerator ("hello world")
- AdderAccelerator
- FFTAccelerator⁵

⁵https://github.com/grebe/ofdm

Current esp-chisel-accelerators

- CounterAccelerator ("hello world")
- AdderAccelerator
- FFTAccelerator⁵

Future Work

- Additional collateral generation including:
 - Basic bare metal and Linux test programs
 - Drivers
- New accelerators

⁵https://github.com/grebe/ofdm

More Info

ESP	github.com/sld-columbia/esp
	github.com/IBM/esp-chisel-accelerators
Chisel3	github.com/freechipsproject/chisel3
Twitter	@chisel_lang
FIRRTL	github.com/freechipsproject/firrtl

Figure 9: github:@seldridge

The research reported in this talk was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. government.

Distribution Statement A: Approved for public release, distribution unlimited.