
Improving Ibex 
Performance

Greg Chadwick
RISC-V Devroom FOSDEM 1st February 2020



1st February 2020

Ibex

2

● Microcontroller class CPU with two stage pipeline

● 32-bit RISC-V IMC/EMC with M-Mode, U-Mode and PMP

● Written in SystemVerilog

● Initially developed as Zero-riscy as part of the PULP platform 
by ETH Zurich

● Now developed by lowRISC, a not for profit company building 
open source silicon through collaborative engineering

● Used by the recently announced OpenTitan, an open source 
silicon root of trust



1st February 2020

Improving Performance
● Aim to reduce total cycles to execute Coremark and Embench

● Need to be careful about optimising for the benchmark only

● Analysis of execution provides a useful guide for what to 
improve

● Must consider how applicable improvements will be to code 
that isn’t benchmarks

● Planned improvements will be configurable options

○ Choose a smaller/simpler Ibex or a faster one

3



1st February 2020

Trial System
● Simulate Ibex with Verilator

● Dual ported memory containing code and data

● Single cycle memory access latency

● Reasonable analogue of a best case ‘real’ system

4



1st February 2020

Analysis Techniques (1)
● Run the benchmark

● Trace the simulation

● Examine trace in GTKWave

○ Look at signals indicating top-level stall

○ Choose a few points to examine why stall is occurring

● No quantitative analysis but quick and easy way to survey 
what kinds of things are slowing down execution

5



1st February 2020

Trace in GTKWave, Branch Stall

ALU checks 
branch 
condition

bne t2,s5,100404
6



1st February 2020

Trace in GTKWave, Branch Stall

ALU checks 
branch 
condition

ALU 
calculates 
branch target

bne t2,s5,100404
7



1st February 2020

Trace in GTKWave, Branch Stall

ALU checks 
branch 
condition

ALU 
calculates 
branch target

Branch Taken

bne t2,s5,100404
8



1st February 2020

Trace in GTKWave, Load Stall

lw t3,12(sp)

Load 
requested

9



1st February 2020

Trace in GTKWave, Load Stall

lw t3,12(sp)

Load 
requested

Data 
returned

10



1st February 2020

Analysis Techniques (2)
● Log performance counters after benchmark run

● Use previous survey to decide on interesting things to count

● Examine with spreadsheet to produce quantitative data on 
effect stall conditions from informal survey have on 
performance

11



1st February 2020

Branch Stall %
% of total cycles spent calculating branch target

12



1st February 2020

Memory Stall %
% of total cycles spent waiting for memory response

13



1st February 2020

Branch target ALU
● Add second ALU to calculate 

branch targets

● Compute branch target and 
branch condition in parallel

● Minor area increase for ~4% 
performance gain

14



1st February 2020

Implementation Trials
● Need to check impact of change on frequency and area

● Built experimental synthesis flow using Yosys with Timing 
Analysis via OpenSTA

● Using the nangate 45nm library available from the 
OpenROAD repository

● Better numbers likely achievable with commercial tools and 
library

○ Flow used to see relative changes and areas of timing 
pressure

15



1st February 2020

Branch Target ALU Implementation Results

● Adding in branch target ALU reduced maximum frequency

● Overall worse performance at Fmax (but better per MHz)

● What can we do about it? 

Base Branch Target ALU % change
Coremark/MHz 2.40 2.51 +4.5 %
Area 27,345 μm2 27,666 μm2 +1.2 %
Fmax 269 MHz 234 MHz -13.0 %
Coremark 645.6 587.3 -9.0 %

16



1st February 2020

Can you spot the problem (1) ?

17



1st February 2020

Can you spot the problem (2) ?
● Previously the branch 

decision was stored in 
a flop after being 
computed by the main 
ALU

● Now it’s being fed 
straight in the PC Mux 
select

● Main ALU result used 
to feed into PC 
selection mux (as it 
computed the target), 
which was the worst 
path

● It now goes via extra 
logic into the select

● So worst path has got 
longer

18



1st February 2020

How Do We Fix It?
● Need main ALU result earlier

● Key issue is selects for ALU operand mux, provided by the 
decoder

● Decoder complex blob of logic, so outputs not as early as we 
like

● Make the ALU operand mux select outputs earlier from the 
decoder and we can solve the problem 

19



1st February 2020

Instruction Flop Fan-Out
● Instruction flop in ID/EX has a large fan-out

○ Meaning it feeds its data to many different gates

● Requires buffering to ensure it can drive everything it 
connects to

● Reduce required buffering by duplicating it

● Split decode to decide ALU operand select and operation 
from duplicated register

● Decode all other control from other register

20



1st February 2020

Improved Branch Target ALU Implementation

● Slightly better area due to reduced buffering

● Still haven’t restored Fmax

○ Yosys/ABC doesn’t take IO timing constraints into account

○ So doesn’t optimise worst path properly

○ May not want to run at Fmax anyway

Base Branch Target ALU % change
Coremark/MHz 2.40 2.51 +4.5 %
Area 27,345 μm2 27,579 μm2 +0.9 %
Fmax 269 MHz 250 MHz -7.6 %
Coremark 645.6 627.5 -2.8 %

21



1st February 2020

Writeback Stage
● Add a third pipeline stage, 

writeback which holds the 
value to be written to the 
register file

● Load data from memory writes 
direct to the register file

● Drops a stall cycle for loads & 
stores as response only needed 
the cycle after ID/EX

● Greatly Simplified Diagram!
○ Significant new stalling 

and hazard logic needed

22



1st February 2020

Writeback Implementation

● Notable area cost

○ Outweighed by performance gains

● Little change in Fmax from BT ALU implementation

○ Worst case path from BT ALU change still dominates

Base Writeback + BT ALU % change
Coremark/MHz 2.40 2.88 +20.0 %
Area 27345 μm2 29212 μm2 +6.8 %
Fmax 269 MHz 253 MHz -6.3 %
Coremark 645.60 728.64 +12.9 %

23



1st February 2020

Overall Speedup
Coremark/MHz Speedup

Base 2.40 -
BT ALU 2.51 4.5%
Writeback + BT ALU 2.88 20%

Geomean Speedup
BT ALU 4.42%
Writeback + BT ALU 21.3%

24



1st February 2020

Find Out More
● Check out the Ibex repository 

www.github.com/lowRISC/ibex 

● Third pipeline stage + benchmarking infrastructure not yet in 
main repository

○ See my ‘ibex_fosdem’ branch at 
www.github.com/GregAC/ibex to take a look

● See the lowRISC website at www.lowrisc.org 

○ Now recruiting!

● My email: gac@lowrisc.org 
25

http://www.github.com/lowRISC/ibex
http://www.github.com/GregAC/ibex
http://www.lowrisc.org
mailto:gac@lowrisc.org

