
@sadisticsystemssled.rs

sled and rio
Rust DB + io_uring =



@sadisticsystemssled.rs

who am I

❖ building Rust databases since 2014
❖ previously worked at some social media & 

infrastructure companies
❖ for fun, I build and destroy distributed 

databases
❖ also for fun, I teach Rust workshops
❖ lol work



@sadisticsystemssled.rs

I like databases because they 
often involve many interesting 

engineering techniques



@sadisticsystemssled.rs

common database techniques

❖ lock-free programming
❖ replication, consensus, eventual 

consistency
❖ correctness testing
❖ self-tuning systems
❖ performance work



@sadisticsystemssled.rs

I started sled to have a 
single project where I could 

implement papers I read



@sadisticsystemssled.rs

sled acts like a concurrent 
BTreeMap that saves data on disk



@sadisticsystemssled.rs

Rust is the best DB language

1. Rust will approach Fortran performance in many cases. 
C/C++ is really limited by aliasing. More compile-time 
info => better optimizations.

2. Correctness. When there's a segfault, I have a very small 
set of unsafe blocks to audit to quickly narrow my search 
down.

3. Compatibility with the great C/C++ perf/debugging tools
4. I can accept code in pull requests with a small fraction 

of the mental energy as I would need to put into auditing 
C/C++ due to the compiler's strictness



@sadisticsystemssled.rs

fast to compile, low friction dev



@sadisticsystemssled.rs

built-in
profiler

● easy to answer
“why is this slow?”



@sadisticsystemssled.rs

heavy use of flamegraph crate

github.com/flamegraph-rs/flamegraph



@sadisticsystemssled.rs

1 billion operations in 57 
seconds @ 95% reads / 5% 

writes / small working set



@sadisticsystemssled.rs

seriously though, it’s beta



@sadisticsystemssled.rs

never use a database less than 
5 years old

- site reliability engineering proverb



@sadisticsystemssled.rs

sled turns 5 this year, so 
2020 will be an exciting year 

for the project



@sadisticsystemssled.rs

let’s see how it works!



@sadisticsystemssled.rs

sled architecture

❖ lock-free index loosely based on the Bw-Tree
❖ lock-free pagecache loosely based on LLAMA
❖ log structured storage loosely based on Sprite 

LFS
❖ io_uring on huge buffers for writes

➢ io_uring functionality exported as rio crate
❖ cache based on W-TinyLFU

➢ exported (soon!) as berghain crate



@sadisticsystemssled.rs

we avoid blocking while 
reading and writing



@sadisticsystemssled.rs

 setting a key to a new value
 

1. traverse tree to find the key’s 
leaf

2. modify the leaf to store the new 
key-value pair



@sadisticsystemssled.rs

but, we can’t block readers or 
writers while updating



@sadisticsystemssled.rs

latency



@sadisticsystemssled.rs

we use a technique called RCU



@sadisticsystemssled.rs

Read-Copy-Update (RCU)

1. read the old value through an AtomicPtr
2. make a local copy
3. modify the local copy with the desired changes
4. use the compare_and_swap method to install the new 

version. goto #1 if we fail.
5. use crossbeam_epoch to delay garbage collection 

until all threads that may have witnessed the old 
version are finished



@sadisticsystemssled.rs

readers don’t wait for writers

writers procede optimistically



@sadisticsystemssled.rs

however, we need to also 
guarantee that our atomic 

operations are saved to disk 
in the same order



@sadisticsystemssled.rs

buggy solution

1. read
2. mutate local 

copy
3. CAS
4. log to disk

if the log message is 
delayed, other threads 
may perform their updates 
between 3 & 4. if the 
database crashes, it will 
load the last item in the 
log. we have to guarantee 
our log order matches our 
in-memory order

thread descheduled here



@sadisticsystemssled.rs

data loss



@sadisticsystemssled.rs

good solution (LLAMA trick)

1. read
2. mutate local copy
3. reserve log slot
4. CAS
5. only fill log 

reservation if CAS 
succeeded

by ordering our log 
reservations between the 
read and the CAS, we 
guarantee that the order 
on-disk will match what 
actually happened in 
memory, without using any 
locks.



@sadisticsystemssled.rs

how to de get fast io?
● we only write when we have 

8mb of data to write 
sequentially

● we support out-of-order 
writes

● io_uring



@sadisticsystemssled.rs

io_uring is an interface for 
fully asynchronous linux 

syscalls



@sadisticsystemssled.rs

the old AIO interface forces 
O_DIRECT, isn’t actually async 

sometimes, etc...



@sadisticsystemssled.rs

io_uring began as a response 
to that, but is far more 

ambitious



@sadisticsystemssled.rs



@sadisticsystemssled.rs

it’s 2 ring buffers
● submission
● completion



@sadisticsystemssled.rs

after setup, it can be run 
with 0 syscalls (SQPOLL)



@sadisticsystemssled.rs

io_uring is provided via the rio crate



@sadisticsystemssled.rs



@sadisticsystemssled.rs

operations are executed 
out-of-order



@sadisticsystemssled.rs

chained operations



@sadisticsystemssled.rs

connect + send + recv



@sadisticsystemssled.rs

PLs are DSLs for syscalls



@sadisticsystemssled.rs

io_uring changes this 
conversation



@sadisticsystemssled.rs

over time, BPF may be used to 
execute logic between chained 

calls, eg:
accept -> read -> write



@sadisticsystemssled.rs

userspace: control plane
kernel: data plane



@sadisticsystemssled.rs

rio is misuse resistant

● guarantees Completion events don’t outlive the ring, the 
buffers, or the files involved.

● automatically handles submissions
● prevents ring overflows that can happen by submitting too 

many items
● on Drop, the Completion waits for the backing operation 

to complete, to guarantee no use-after-frees.



@sadisticsystemssled.rs

Basically all 
performance-conscious projects 
are getting ready to migrate 
to it, and they are measuring 

impressive results.



@sadisticsystemssled.rs



@sadisticsystemssled.rs

Try them out :)
docs.rs/rio
docs.rs/sled



@sadisticsystemssled.rs

Our Results To Date
● pure-rust io_uring functionality

● Modified Bw-Tree lock-free architecture (lock-free, log-structured)

● Millions of reads + writes per second (1 billion/minute)

● Minimal configuration

● Multiple keyspace support

● Reactive prefix subscription, replication-friendly

● Merge operators, CRDT-friendly

● Serializable transactions

https://github.com/spacejam/sled/wiki/sled-architectural-outlook


@sadisticsystemssled.rs

Where We Want To Go

❖ Support for all io_uring operations

❖ Typed trees: cutting deserialization costs for hot keys

❖ Replication

❖ Make it more efficient

➢ sled is currently a bit disk-hungry, we can dramatically improve 
this!

❖ Make it safer! This is the main point before 1.0

➢ SQLite-style formal requirements specification & corresponding 
testing



@sadisticsystemssled.rs

Help Us Get There!

● Sponsorship allows me to focus all of my time on open 
source:

○ https://github.com/sponsors/spacejam

● Want to contribute to a cutting-edge and 
industry-relevant DB? 
○ https://github.com/spacejam/sled

○ We love to mentor and teach people about databases!
○ Also check out our active discord channel

https://github.com/sponsors/spacejam
https://github.com/spacejam/sled
https://discord.gg/Z6VsXds


@sadisticsystemssled.rs

I also run Rust trainings!



@sadisticsystemssled.rs

Thank you :)


