Asynchronous Directory
Operations in CephFS

Jeff Layton < >
Patrick Donnelly < >

ceph

mailto:jlayton@redhat.com
mailto:pdonnell@redhat.com

WHO ARE THESE GUYS?

o Jeff

o longtime kernel dev for RH, focusing on network filesystems (NFS and CIFS, mostly)
o has done some recent work with userland ceph
o recently took over upstream maintainership of kcephfs

e Patrick

o Joined RHin 2016; CephFS team lead
o Works on all aspects of CephFS but mostly shepherds projects now.

@ ceph

NETFS DIRECTORY OPERATIONS ARE SLOW

e open(..,O_CREAT), unlink(), etc.

e usually involve a synchronous
round trip to server

e Affects many common workloads:
o untar’ing files
o rsync
o removing directories recursively
o compiling software

 jCEDh

Observation: why are local file systems so fast?

e Obvious: no roundtrip latency with a remote file server.
e Local file systems buffer metadata mutations in memory until fsync on the

directory/file or sufficient time has elapsed. Consequences:
o Mutations can be written in batch to the journal in more efficient writes.
o Operations are not quaranteed to be durable if no fsync is called:
m rename, unlink, create require fsync on the containing directory file descriptor!
m chmod, chown, setxattr require fsync on inode’s file descriptor!

Observation: why are local file systems so fast?

e Obvious: no roundtrip latency with a remote file server.
e Some (non-journaled) local file systems buffer metadata mutations in
memory until fsync on the directory/file or sufficient time has elapsed.

Consequences:
o Mutations can be written in batch to the journal in more efficient writes.
o Operations are not quaranteed to be durable if no fsync is called:
m rename, unlink, create require fsync on the containing directory file descriptor!
m chmod, chown, setxattr require fsync on inode’s file descriptor!

What’s CephFS?

ceph

open
mkdir

listdir «/A\»

Standby
MDS

Metadata
Metadata Exchange Mutation

Journal
u Journal Flush Journal

N~ N

Metadata

D Pool
ata Poo Pool

~ ~ 2

CEPHFS CAPABILITIES

CephFS capabilities (aka caps) delegate parts of inode metadata to client
Types: PIN, AUTH, FILE, LINK, XATTR

All have a SHARED/EXCLUSIVE variety

FILE caps have other bits (READ, WRITE, CACHE, BUFFER, LAZYI10)
Shorthand notation: pAsxLsxFsxrwcbIXsx

e e e et S e e bt e e &
| p | - |As X |Ls X |Xs X |Fs X c r w b a 1 |
e e e T S S e S S e T it Aaet P T

P
VN

[£ &~ \

(O)]

\\VY/]/

) A (4

EXTENDING DIRECTORY CAPABILITIES

e FILE caps are largely unused on directories, except (Ds)
e Start handing them out on directories, and just interpret them differently

e Sofar:

o CREATE requires Dc (aka Fc)
o UNLINK requires Du (aka Fr)

e Work in conjunction with Fx caps
e Internally in MDS, done via a new lock caching facility

e Only handed out in response to first create or unlink in a directory
o First call must be synchronous to establish the lock cache

e s st s et L S et Ik TR

| p | - |As X |Ls X |Xs x |Ds X C u |
e Ay Sy ——+—— +

® ceph

CEPHFS DIRENT CACHING

e Async dirops require reliable cached information about dentry

e Two mechanisms

o individual positive or negative dentry lease
o Fscaps ondirectory

e For latter, also track directory “completeness”
o Basically whether we have a record of all dentries in a directory
o Allows us to satisfy negative lookups w/o talking to the MDS

Asynchronous Metadata Mutations

ceph

SYNCHRONOUS UNLINKS (STATUS QUO)

e In CephFS, unlink is done synchronously by the client. The application does
not return from the syscall until the unlink is durable.
e Thisis particularly slow for recursive unlinks...

 jCEDh

h

getattr /dir

caps /dir Fwrx

getdents(fd)

r ir ir

= 803
unlink(“dir/<1>”)...

caps /dir/... Fwrx

| unlink /dir/...

rmdir(“/dir”)

—
[4
[

| rmdir /dir |

\\\Tiihine01

machine®?

SHOULD WE WAIT TO TRANSMIT ASYNC REQ’S?

e Namespace ops are fundamentally different from data writeback

e Normal Files:

o Datais stored in kernel’s pagecache and later written to backing store
o High probability that recently modified data will be changed again in future
o Advantageous to delay write requests for a bit to allow writes to be batched

e Directories:
o Workloads that rapidly create/unlink same dentry are fairly rare
o Not much advantage to delaying transmission of any async request (exception: rsync)
o Might change if we deem batched calls to be useful in future

@ ceph

ASYNCHRONOUS UNLINK

e Requirements:
o Fxand Du (aka Fr) caps on parent directory
o Known positive dentry
m Positive dentry lease
m Fsonthedirectory and a positive dentry

e Fire off UNLINK call to MDS and then immediately delete the dentry locally
e When reply comes in, do only minimal processing

e rmdir() of parent has to wait for all child unlink replies to come back
o Future work: support async rmdir!

ceph

opendir()

= fd

readdir(fd)

L readdir /dir J

= 803 caps /dir/... Fwrx |

N x (unlink /dir/..)

unlink /dir/

N x (=0)
rmdir(“/dir”) [rmdir /dir]

machine®1)
machine0?2
.

UNLINK PERFORMANCE

Where the test-dirops directory has 10k files:

$ time rm -f /mnt/cephfs/test-dirops/*

Without async dirops: With async dirops:

real Om10.371s real Omo.385s
user Om0O.138s user OmO.110s
SyS OmO.672s Sys Ome.077s

@ ceph

TIME SPENT IN ceph_unlink()

Without async dirops:

@unlink[rm]:
[512K, 1M)
[1M, 2M)
[2M, 4M)
[4M, 8M)
[8M, 16M)
[16M, 32M)
[32M, 64M)

7855
2033
92

N WO

With async dirops:

@unlink[rm]:
[1K, 2K)
[2K, 4K)
[4K, 8K)
[8K, 16K)
[16K, 32K)
[32K, 64K)
[64K, 128K)
[128K, 256K)
[256K, 512K)
[512K, 1M)
[1M, 2M)
[2M, 4M)
[4M, 8M)
[8M, 16M)

3380
3348
3182

= O
O

o O M MRKMRKMEBMOO

@ ceph

OPPORTUNITIES TO IMPROVE UNLINK

e Asynchronous rmdir
o rmdir acts as an implicit fsync, preventing continuation until all child dirents are unlinked
o rm -rf /mnt/cephfs/test-dirops/ behaves differently!
e Tuning in-flight asynchronous unlink operations
o Find the proper balance between slowing down the application and performing the unlinks as
fast as possible. Too many operations in flight may disrupt other applications or other CephFS
clients!
e Batching unlink operations

o Gather up unlink operations into single RPC so MDS can more efficiently acquire locks and
write journal segments.

) ceph

ASYNCHRONOUS CREATE

e Requirements:
o Fxand Dc (aka Fc) caps on parent directory
o Known negative dentry
m Negative dentry lease
m Fsonparent directory + completeness
o File layout (copied from first sync create in a directory)
o Delegated inode number

e Fire off the create call immediately set up new inode and return from open()
e Assume newly-created inode gets full caps from MDS (pAsxLsxFsxcbrwXxs)
e Always set O_EXCL in the call to MDS

) ceph

INODE NUMBER DELEGATION

e Need to know in advance what the inode number will be
o tohashinode properly in kernel
o allow for writes before reply comes back: solves fsync races

e MDS will now hand out ranges of inode numbers in CREATE responses

e new userland tunable: mds_client_delegate_inos_pct
o “percentage of preallocated inos to delegate to client”
o default == 50, so client usually has ~500 at a time
e Tiedto MDS session
o if session is reconnected, then (WIP) client should resend async creates with previously
delegated inodes

) ceph

CREATE PERFORMANCE

Create 10k files in a directory:
time for 1 in "seq 1 10000 ; do
echo "foobarbaz" > STESTDIR/S$i1

done

Without async dirops: With async dirops:
real Omll.390s real Om5.519s
user OmO.315s user OmO.132s
Sys Ome.974s SysS Omo.496s

@ ceph

TIME SPENT IN ceph_atomic_open()

Without async dirops:

@open[test-async-diro]:

[256K, 512K)
[512K, 1M)
[1M, 2M)
[2M, 4M)
[4M, 8M)
[8M, 16M)
[16M, 32M)
[32M, 64M)
[64M, 128M)
[128M, 256M)

8
9791
187
p

N OO Qe

With async dirops:

[8K, 16K)

[16K, 32K)
[32K, 64K)
[64K, 128K)

[128K, 256K)
[256K, 512K)
[512K, 1M)
[1M, 2M)
[2M, 4M)
[4M, 8M)
[8M, 16M)
[16M, 32M)
[32M, 64M)
[64M, 128M)
[128M, 256M)
[256M, 512M)

641
2388
6290

599

v
= N

=
O OO OOO WO O

@ ceph

Kernel Build (time make -j16 ; time make clean)

#! /bin/bash

mkdir linux

cd linux/

tar xf ../linux.tar
make defconfig

make -j16

Without async dirops: With async dirops:
real 4m57 .678s real 4m6.937s
user 26m43.167s user 25m47.064s
SYysS 4m21.124s SyS 3m58.909s

@ ceph

OPPORTUNITIES TO IMPROVE CREATE

e Optimize for rsync
o In-place renames

e Batching creates similar to unlink
e Other operations: mkdir, symlink, in-place rename
e Error handling...

@ ceph

ERROR HANDLING

e If we return early from unlink() or open(), then what to do when the ops fail?
o For creates, we may have already closed the file by the time reply comes in
o Which failures are permitted by the protocol?

e From fsync(2) manpage:

Calling fsync() does not necessarily ensure that the entry in the directory
containing the file has also reached disk. For that, an explicit fsync() on a file
descriptor for the directory is also needed.

e Nobody really does this, and most modern local fs’ journal the create

) ceph

ERROR HANDLING (CONT’D)

e Currently after failed unlink
o mark directory non-complete
o invalidate dentry
o set writeback error on parent directory to show up on fsync(dirfd)

e After failed create

o invalidate dentry
o set writeback error on parent directory
o set writeback error on created inode

e One idea: propagate errors to parent directories all the way up to the root of
the mount
e We may need to consider new interfaces

) ceph

Questlons’?

Jeff Layton <
Patrick Donnelly < >

ceph

mailto:jlayton@redhat.com
mailto:pdonnell@redhat.com
https://ceph.io/
https://github.com/ceph/ceph.git/

