Explicitly Supporting
Stretch Clusters in Ceph

Greg Farnum
FOSDEM 2020

ceph

I’'M GREG

e Working on Ceph since 2009 (10 years!), all over

e @gregsfortytwo

@ ceph

mailto:gfarnum@redhat.com

Ceph Daemons

ceph

Ceph Cluster Daemons

@ ceph

Ceph Cluster Daemons

@ ceph

RADOS WRITES

e Application connects to monitors, gets “OSDMap” describing cluster
o Onlyoncel!
e Runs CRUSH algorithm to learn which OSD owns the object (is “primary”)
e Sends write operation to primary OSD
e Primary OSD receives request, validates it
o Sends operation to replica OSDs for this PG

o Each OSD commits operation to disk, then replies to primary
o Primary OSD replies to client

Writes in RADOS

@ ceph

Writes in RADOS

@ ceph

Writes in RADOS

@ ceph

Writes in RADOS

@ ceph

\Y v .
LN

e

STRETCH CLUSTER: DEFINITION

A cluster with servers in geographically separated data centers run over a WAN.
We expect to still have LAN-like high-speed, low-latency connections, but limited
links.

In particular, a much-higher than usual likelihood of (possibly asymmetric)
network splits, and of the temporary or complete loss of an entire DC (/5 to /2 the
total cluster).

@ ceph

You can deploy a
stretch cluster today...

ceph

Stretch Clusters Today: 3 Data Centers

@ ceph

Stretch Clusters Today: 2 Data Centers

@ ceph

Stretch Clusters Today: Don’t Do This!

@ ceph

You can deploy a
stretch cluster today...
But there’s a problem

ceph

Monitor Leader Elections

ceph

LEADERS

e Leaders coordinate everything the monitors do
e Allupdates go to the leader
e Leaders distribute changes to everybody else (“peons”)

Interesting consequences:

e Peons don’t talk to each other
e Leaders talk to everybody else
e The only all-to-all communication is during elections, to choose the leader

@ ceph

LEADER ELECTIONS

e Start an election for some reason (turned on, timed out, etc)
e Bump the election epoch (so we can detect old messages/peers)
e Senda PROPOSE to all other monitors

e When receivinga PROPOSE:

e If senderis notin quorum, start an election so they can join

e If senderis lower ID than us (and anybody else we’ve seen this election),
DEFER to them

e If senderis higher ID than us, bump epoch and propose ourself

@ ceph

LEADER ELECTIONS

e IfwegetaDEFER from all our peers, become leader and send a VICTORY
message

e |[f we time out an election and >half the monitors have DEFERed to us,
become leader and send VICTORY

e |f we time out and haven’t had a quorum DEFER to us and we haven’t gotten a
victory, bump epoch and send out PROPOSE messages again

M

Leader Elections

@ ceph

Leader Elections

ceph

1 Propose!

1 Propose!

) 2

~

Leader Elections: Propose a new leader (yourself)

1 Okay!
2

Leader Elections: Ack the propose, if it’s a better number

@ ceph

2
Propose! 2

Propose!

1 Okay!
2

Leader Elections: Bump epoch and propose, if you’re better

@ ceph

2 Okay!
2 Okay!

2

Leader Elections: Ack the propose, if it’s a better number

@ ceph

2 1 Won!

(012) 2 | Won!
(012)

Leader Elections: Win if everybody acks you

Leader Elections w/ Netsplit

ceph

3 Propose' /

3 Propose!

) 2

~

Leader Elections w/ Netsplit: Propose a new leader
(yourself)

@ ceph

3 Okay!
2

Leader Elections: Ack the propose, if it’s a better number

@ ceph

3 1 Won!
(12)

) 2

~

Leader Elections w/ Netsplit: Win if the election times
out and you got enough acks

@ ceph

3
Propose! 3

Propose!

Leader Elections w/ Netsplit: Propose a new leader
(yourself)

@ ceph

4
Propose!
4
~— Propose! : !

Leader Elections w/ Netsplit: Bump epoch and propose,
if proposer is out of quorum

@ ceph

O

5
Propose! 5 5
Propose! Propose!
5
. Propose! : 2
~

Leader Elections w/ Netsplit: ...oh no

@ ceph

New Leader Elections: The Plan

ceph

MAKE CODE CHANGEABLE

e Code mixed message passing and election logic in same functions
e Updateit:
o Split out new “ElectionLogic” class; deals with abstract Propose and Ack concepts

o Message passing remains in “Elector”, which calls into ElectionLogic
o Write ElectionLogic unit tests!!! (Simple time-step framework)

e Makes election algorithm dramatically easier to iterate and experiment with
e Detected several issues in updated algorithms without ever running a real

cluster
o Validate algorithm changes in <1 second
o Easy to create complex scenarios (connectivity, Elector state, etc) in short functions

UNIT TESTING CODE

void , C1 (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);
election.block_bidirectional_messages(@, 1);
election.start_all(Q);
int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<

timesteps" << dendl;
// This 1s a failure mode!

ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // double the timer_steps we use
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

void , ct (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy); <« Create an election setup
election.block_bidirectional_messages(@, 1);
election.start_all(Q);
int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<

timesteps" << dendl;
// This 1s a failure mode!

ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // double the timer_steps we use
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

void , ct (ElectionLogic::election_strategy strategy)

{

Election election(5, strategy);
election.block_bidirectional_messages(@, 1); <@ electors 0and1can't talk to each other
election.start_all(Q);

int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<

timesteps" << dendl;
// This 1s a failure mode!

ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // double the timer_steps we use
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

void , ct (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);
election.block_bidirectional_messages(@, 1);
election. Start-a'll(); < Turn on all the electors
int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<

timesteps" << dendl;
// This 1s a failure mode!

ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // double the timer_steps we use
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

void , ct (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);
elect}on.block_b1d1rect1onal_messages(@, 133 Run forward in time, up to 100 message
election.start_all(Q); intervals
int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<

timesteps" << dendl;
// This 1s a failure mode!

ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // double the timer_steps we use
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

void block ct onti ~ (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);

election.block_bidirectional_messages(@, 1); When an election is stable:

election.start_allQ); Electors have no timeouts pending, and
int steps = election.run_timesteps(100); no messages in flight
ldout(g_ceph_context, 1) << "ran in " << steps/<< " timesteps" << dendl;

// This 1s a failure mode!

ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // double the timer_steps we use

election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

UNIT TESTING CODE

void block cti onti » (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);
election.block_bidirectional_messages(@, 1);
election.start_all(Q);
int steps = election.run_timesteps(100);

1dout(g_ceph context, 1) << "ran in " << steps /<
// This 1s a failure mode!
ASSERT FALSE(Celection. e1ect10n _stable());
ASSERT_FALSE(election.quorum_stable(6));
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(Celection.quorum_stable(6)); // double the timer_steps
ASSERT_TRUE(election.check_leader_agreement()); timer_stepsis how may timesteps before an

ASSERT_TRUE(election.check_epoch_agreement()); electordecidesit won't getareply to
} messages. That’s 3, by default.

Assert the quorum has changed recently

timesteps" << dendl;

4 i hl . LT moarn cdAarc WO 11
// double the timer_steps we use

timesteps"” <

~500 line test harness; simple-to-complicated tests O
2 ceph

UNIT TESTING CODE

void , C1 (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);
election.block_bidirectional_messages(@, 1);
election.start_all(Q);
int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps

Run forward again

< " timesteps" << dendl;
// This 1s a failure mode!
ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6));/ / ¢
election.unblock_bidirectional_messag
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.quorum_stable(6)); // double the timer_steps we use
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(Celection.check_epoch_agreement());

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

void block: C1 ont ~ (ElectionLogic::election_strategy strategy)
{
Election election(5, strategy);
election.block_bidirectional_messages(@, 1);
election.start_all(Q);
int steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps <<

All the electors agree who the leader is

timesteps" << dendl;
// This 1s a failure mode!
ASSERT_FALSE(election.election_stable());
ASSERT_FALSE(election.quorum_stable(6)); // doublle the timer_steps we use
election.unblock_bidirectional_messages(@, 1);
steps = election.run_timesteps(100);
ldout(g_ceph_context, 1) << "ran in " << steps
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(Celection.quorum_stable(6)); // doubge
ASSERT_TRUE(election.check_leader_agreement());

ASSERT_TRUE(election.check_epoch_agreement()); g— ! the electorsagree what election
} epochitis

timesteps" << dendl;

~500 line test harness; simple-to-complicated tests

@ ceph

DEVELOP A NEW ALGORITHM

Key ideas:

e Maintain connection scores between each monitor
o And share these broadly so everybody has an almost-current view of connectivity

e Handle propose messages based on score instead of ID number
e Specify monitors as “disallowed leaders”
o Atiebreaker monitor might be far away and slow!

e ..and that’s really it in broad strokes
o It’s more complicated in detail: unlike IDs, scores change! Lots of new and newly-explicit
invariants and checks, care in sharing and changing score views, etc

Pull request: https://github.com/ceph/ceph/pull/32336

UNIT TESTING CODE

ConnectionTracker& ct@ = election.electors[@]->peer_tracker;
ConnectionReport& cr@® = *get_connection_reports(ct@);

CF@-h?StOPYElj = 0.5; Muck around with the scores to set
cr@.history[2] = 0.5; them directly and lie about system state
ct@.increase_version();

election.ping_interval = @; // disable pinging to update the scores
ldout(g_ceph_context, 5) << "mangled the scores to be different" << dendl;

election.start_all(Q);
election.run_timesteps(50);
ASSERT_TRUE(election.quorum_stable(30));
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(election.check_epoch_agreement());

~500 line test harness; simple-to-complicated tests O
2 ceph

UNIT TESTING CODE ~_ Tracks all the peers
>

ConnectionTracker& ct@ = election.electors[@]->peer_tracker;
ConnectionReport& cr@® = *get_connection_reports(ct@);
cr@.history[1] = 9.5;
cr@.history[2] = 0.5; ——Iracks a single peer’s score
ct@.increase_version();

election.ping_interval = @; // disable pinging to update the scores
ldout(g_ceph_context, 5) << "mangled the scores to be different" << dendl;

election.start_all(Q);
election.run_timesteps(50);
ASSERT_TRUE(election.quorum_stable(30));
ASSERT_TRUE(election.election_stable());
ASSERT_TRUE(election.check_leader_agreement());
ASSERT_TRUE(election.check_epoch_agreement());

~500 line test harness; simple-to-complicated tests O
2 ceph

UNIT TESTING CODE

ConnectionTracker& ct@ = election.electors[@]->peer_tracker;
ConnectionReport& cr@® = *get_connection_reports(ct@);
cr@.history[1] = 0.5;

cr@.history[2] = 0.5;

ct@.increase_version();

election.ping_interval = @; // disable pinging to update the scores

ldout(g_ceph_context, 5) <¥g'mangled the scores to be different" << dendl;
\ Disable pinging so it doesn’t update to be correct

election.start_all(Q);

election.run_timesteps(50);

ASSERT_TRUE(election.quorum_stable(30));

ASSERT_TRUE(election.election_stable());

ASSERT_TRUE(election.check_leader_agreement());

ASSERT_TRUE(election.check_epoch_agreement());

~500 line test harness; simple-to-complicated tests

@ ceph

UNIT TESTING CODE

ConnectionTracker& ct@ = election.electors[@]->peer_tracker;
ConnectionReport& cr@® = *get_connection_reports(ct@);
cr@.history[1] = 0.5;

cr@.history[2] =

ct@.increase_version();

election.ping_interval = @; // disable pinging to update the scores

ldout(g_ceph_context, 5) << "mangled the scores to be dlfferent << dendl;
Run forward a bit and validate everybody!

election.start_all(Q);

election.run_timesteps(50);

ASSERT_TRUE(election.quorum_stable(30));

ASSERT_TRUE(election.election_stable());

ASSERT_TRUE(election.check_leader_agreement());

ASSERT_TRUE(election.check_epoch_agreement());

~500 line test harness; simple-to-complicated tests O
® ceph

New Leader Elections:
Connectivity mode

ceph

0:Up, 1

1: Up, 1
2: Up, 1
Ping
Ping
0: Up, 1
1: Up, 1
2: Up, 1
gy 0: Up, 1
I 1: Up, 1
2: Up, 1
~

Leader Elections: Pinging

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
Ping
O0: Down, .8
1: Up, 1
2: Up, 1
Ping 0: Up, 1
o 1: Up, 1
2: Up, 1
~

Leader Elections: Pinging

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
K}
Propose!
O0: Down, .8
1: Up, 1
2: Up, 1
3 Propose! 0: Up, 1
— 1: Up, 1
2: Up, 1
*

Leader Elections: Propose a new leader (yourself); send
scores you know of

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
4
Propose!
O: Down, .8
1: Up, 1
2: Up, 1
4 Propose! 0: Up, 1
I 1: Up, 1
2: Up, 1

Leader Elections: Bump epoch and propose, if your score
is better

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
4 Okay!
O0: Down, .8
1: Up, 1
2: Up, 1
— 1: Up, 1
2: Up, 1
*

Leader Elections: Ack the propose, if it’s a better score

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
4 | Won!
O0: Down, .8
1: Up, 1
2: Up, 1
4 | Won! 0: Up, 1
I 1: Up, 1
2: Up, 1

Leader Elections: Win if everybody acks you

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
Disallow: 2
5 Propose
O0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2 5 Propose
*

Leader Elections: You can disallow monitors as leaders

0: Up, 1
1: Up, 1
2:Up, 1
Disallow: 2

@ ceph

0:Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

5 Okay!

O0: Down, .8
1: Up, 1
2:Up, 1
Disallow: 2

Leader Elections: You can disallow monitors as leaders

0: Up, 1
1: Up, 1
2:Up, 1
Disallow: 2

@ ceph

0:Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

51 Won!

O0: Down, .8
1: Up, 1
2:Up, 1
Disallow: 2

Leader Elections: You can disallow monitors as leaders

0: Up, 1
1: Up, 1
2:Up, 1
Disallow: 2

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
Disallow: 2
Ping
O0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2 :
Ping 0: Up, 1
I 1: Up, 1
2: Up, 1
— Disallow: 2

Leader Elections: Connectivity Mode Can Ignore
Out-of-Quorum Peers

@ ceph

0:Up, 1

1: Down, .8
2: Up, 1
Disallow: 2
/ Monitor 1isn’tin
guorum
and | won’t vote
for him, drop!
O0: Down, .8 "
1: Up, 1 =
2: Up, 1
Disallow: 2 5 Propose 0: Up, 1
1 1: Up, 1
2: Up, 1
™ Disallow: 2

Leader Elections: Connectivity Mode Can Ignore
Out-of-Quorum Peers

ceph

0:Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

/ Monitor 1isn’tin

guorum
and | won’t vote
for him, drop!

e
e

O0: Down, .8

1: Up, 1

2: Up, 1

Disallow: 2
0: Up, 1
1: Up, 1
2:Up, 1
Disallow: 2

Leader Elections: Connectivity Mode Can Ignore
Out-of-Quorum Peers

ceph

Connectivity mode: Monitors are happy now

) ceph

OSD Peering

ceph

OSD PEERING

Primary queries old peers for data version

When versions mismatch, primary asks for update logs

Update logs tell primary which objects it needs

Primary asks old peers for newest copies of all changed objects

A N\\
(10))]
I\\/ /] |

Version 5:
A

Version 8:

ion?
Version? A

B
C
D

OSD Peering: Get Newest Version

@ ceph

Version 5(8):) Version 8:
A Version 8 A

B

C

D

OSD Peering: Get Newest Version

@ ceph

Version 5(8): Version 8:
A Updates 6-87? A
P B
C
D

OSD Peering: Get Update Logs

@ ceph

Version 5(8): Version 8:
A (BCD) BCD A

B

C

D

OSD Peering: Get Update Logs

@ ceph

Version 5(8): Version 8:
B
C
D

OSD Peering: Get Newest Objects

@ ceph

Version 7(8): : Version 8:
A Here’'s BC A
B B
() C
D

OSD Peering: Get Newest Objects

@ ceph

Version 7(8): Version 8:
A Send D A
B B
C (D) C
D

OSD Peering: Get Newest Objects

@ ceph

Version 8:

: Version 8:
A Here’s D A
B B
C C
D D

OSD Peering: Get Newest Objects

@ ceph

PEERING IN REAL LIFE

e Generally 3 copies of all data

e “minsize” required to serve 10: usually 2
o So we canrecover even if one of these quys fails — if we went active with 1 OSD and it died we
are out of luck!

e OSDs know specific versions (nobody else sees all updates)
e ..but monitors know updates were ALLOWED

o Thisis how we identify the old peers to collect data from

v M

. rsion 8
Version 8

rsion 8
Version 8

Peering: The Problem

@ ceph

v M

. rsion 8
Version 8

rsion 8
Version 8

Peering: The Problem

@ ceph

v M

Version 15 rsion 8

rsion 13
Version 13

Peering: The Problem

@ ceph

v M

Version 15 rsion 8

rsion 13
Version 13

Peering: The Problem

@ ceph

DEAD DC? OUCH!

e If welose1of 2 data centers, the odds are good that the survivor has old data

(and if it does, it always knows it)
o MOST of the data will be current, but we need ALL of it!
o Being out-of-date because of 1 rebooting OSD server? BAD :(

e CephisVERY careful not to roll back in time by mistake

DEAD DC SOLUTION: STRETCH MODE

e Design target: 2 data centers, 2 copies in each

e Restrict OSD<->monitor communications to within a single DC (no “rogue”
OSDs talking to the tiebreaker monitor to stay alive-but-inaccessible)

e Extend the peering algorithm: an “acting set” must contain OSDs from

multiple data centers to serve 10
o Ensures survival of an OSD loss AND a data center loss!

This is in-progress

@ ceph

STRETCH MODE: HANDLING DC FAILURE

e OSDs only talk to their own-DC monitor(s)
e Require OSDs from multiple DCs
e Missing DCs? Missing data access :(

o But NOT data loss!:)

e For 2-DC clusters, if awhole DC goes down:

o Surviving DC and tiebreaker monitor declare DC dead
o Remove multi-DC requirement from peering
o Go active —we know we have newest data because every write had to go through our DC!

@ ceph

M

Version 8 rsion 8

rsion 8
Version 8

Stretch Cluster Peering: New Rules

@ ceph

M

Version 8

Version 8

Stretch Cluster Peering: New Rules

rsion 8

rsion 8

@ ceph

Data unavailable here:
but in a real cluster,
you’d have replicas and
it would be fine

Version 8 rsion 8

rsion 13
Version 13

Stretch Cluster Peering: New Rules

@ ceph

M

Version 8 rsion 8

rsion 13
Version 13

b

Stretch Cluster Peering: New Rules

@ ceph

Version 8

rsionHS

rsion 13
Version 13

3

Stretch Cluster Peering: New Rules

@ ceph

Version 8

rsionHS

rsion 17
Version 13

3

Stretch Cluster Peering: New Rules

@ ceph

Version 8

rsionH16

rsion 21
Version 13

3

Stretch Cluster Peering: New Rules

@ ceph

The End

Questions?

ceph

