
Explicitly Supporting 
Stretch Clusters in Ceph

Greg Farnum
FOSDEM 2020



● Working on Ceph since 2009 (10 years!), all over
● gfarnum@redhat.com
● @gregsfortytwo

I’M GREG

mailto:gfarnum@redhat.com


Ceph Daemons



M

Ceph Cluster Daemons



Ceph Cluster Daemons



● Application connects to monitors, gets “OSDMap” describing cluster
○ Only once!

● Runs CRUSH algorithm to learn which OSD owns the object (is “primary”)
● Sends write operation to primary OSD
● Primary OSD receives request, validates it

○ Sends operation to replica OSDs for this PG
○ Each OSD commits operation to disk, then replies to primary
○ Primary OSD replies to client

RADOS WRITES



Writes in RADOS

M M M



Writes in RADOS

M M M



Writes in RADOS

M M M



Writes in RADOS

M M M



Writes in RADOS

M M M



STRETCH CLUSTER: DEFINITION

A cluster with servers in geographically separated data centers run over a WAN. 
We expect to still have LAN-like high-speed, low-latency connections, but limited 
links.

In particular, a much-higher than usual likelihood of (possibly asymmetric) 
network splits, and of the temporary or complete loss of an entire DC (⅓ to ½ the 
total cluster).



You can deploy a
stretch cluster today...



Stretch Clusters Today: 3 Data Centers

M M M



Stretch Clusters Today: 2 Data Centers

M M M



Stretch Clusters Today: Don’t Do This!

M M M



You can deploy a
stretch cluster today…
But there’s a problem



Monitor Leader Elections



LEADERS

● Leaders coordinate everything the monitors do
● All updates go to the leader
● Leaders distribute changes to everybody else (“peons”)

Interesting consequences:

● Peons don’t talk to each other
● Leaders talk to everybody else
● The only all-to-all communication is during elections, to choose the leader



LEADER ELECTIONS

● Start an election for some reason (turned on, timed out, etc)
● Bump the election epoch (so we can detect old messages/peers)
● Send a PROPOSE to all other monitors

● When receiving a PROPOSE:
● If sender is not in quorum, start an election so they can join
● If sender is lower ID than us (and anybody else we’ve seen this election), 

DEFER to them
● If sender is higher ID than us, bump epoch and propose ourself



LEADER ELECTIONS

● If we get a DEFER from all our peers, become leader and send a VICTORY 
message

● If we time out an election and >half the monitors have DEFERed to us, 
become leader and send VICTORY

● If we time out and haven’t had a quorum DEFER to us and we haven’t gotten a 
victory, bump epoch and send out PROPOSE messages again



Leader Elections

M

M

M



Leader Elections

1

0

2



Leader Elections: Propose a new leader (yourself)

1

0

2

1 Propose!

1 Propose!



Leader Elections: Ack the propose, if it’s a better number

1

0

2
1 Okay!



Leader Elections: Bump epoch and propose, if you’re better

1

0

2

2 
Propose!

1 Okay!

2 
Propose!



Leader Elections: Ack the propose, if it’s a better number

1

0

2

2 Okay!
2 Okay!



Leader Elections: Win if everybody acks you

1

0

2

2 I Won!
(012) 2 I Won!

(012)



Leader Elections w/ Netsplit

1

0

2



Leader Elections w/ Netsplit: Propose a new leader 
(yourself)

1

0

2

3 Propose!

3 Propose!



Leader Elections: Ack the propose, if it’s a better number

1

0

2
3 Okay!



Leader Elections w/ Netsplit: Win if the election times 
out and you got enough acks

1

0

2
3 I Won!
(12)



Leader Elections w/ Netsplit: Propose a new leader 
(yourself)

1

0

2

3 
Propose!

3 
Propose!



Leader Elections w/ Netsplit: Bump epoch and propose, 
if proposer is out of quorum

1

0

2

4 
Propose!

4 
Propose!



Leader Elections w/ Netsplit: ...oh no

1

0

2

5 
Propose!

5 
Propose!

5 
Propose! 5 

Propose!



New Leader Elections: The Plan



MAKE CODE CHANGEABLE

● Code mixed message passing and election logic in same functions
● Update it:

○ Split out new “ElectionLogic” class; deals with abstract Propose and Ack concepts
○ Message passing remains in “Elector”, which calls into ElectionLogic
○ Write ElectionLogic unit tests!!! (Simple time-step framework)

● Makes election algorithm dramatically easier to iterate and experiment with
● Detected several issues in updated algorithms without ever running a real 

cluster
○ Validate algorithm changes in <1 second
○ Easy to create complex scenarios (connectivity, Elector state, etc) in short functions



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Create an election setup



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

electors 0 and 1 can’t talk to each other



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Turn on all the electors



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Run forward in time, up to 100 message
intervals



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

When an election is stable:
Electors have no timeouts pending, and
no messages in flight



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Assert the quorum has changed recently

timer_steps is how may timesteps before an
elector decides it won’t get a reply to
messages. That’s 3, by default.



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Run forward again



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

All the electors agree who the leader is

All the electors agree what election
epoch it is



DEVELOP A NEW ALGORITHM

Key ideas:

● Maintain connection scores between each monitor
○ And share these broadly so everybody has an almost-current view of connectivity

● Handle propose messages based on score instead of ID number
● Specify monitors as “disallowed leaders”

○ A tiebreaker monitor might be far away and slow!
● ...and that’s really it in broad strokes

○ It’s more complicated in detail: unlike IDs, scores change! Lots of new and newly-explicit 
invariants and checks, care in sharing and changing score views, etc

Pull request: https://github.com/ceph/ceph/pull/32336



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Muck around with the scores to set
them directly and lie about system state



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Tracks all the peers

Tracks a single peer’s score



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Disable pinging so it doesn’t update to be correct



UNIT TESTING CODE

~500 line test harness; simple-to-complicated tests

Run forward a bit and validate everybody!



New Leader Elections:
Connectivity mode



Leader Elections: Pinging

1

0

2

Ping

Ping

Ping

0: Up, 1
1: Up, 1
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1



Leader Elections: Pinging

1

0

2
Ping

Ping

0: Down, .8
1: Up, 1
2: Up, 1

0: Up, 1
1: Down, .8
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1



Leader Elections: Propose a new leader (yourself); send 
scores you know of

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1

0: Up, 1
1: Down, .8
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1

3 Propose!

3 
Propose!



Leader Elections: Bump epoch and propose, if your score 
is better

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1

0: Up, 1
1: Down, .8
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1

4 Propose!

4 
Propose!



Leader Elections: Ack the propose, if it’s a better score

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1

0: Up, 1
1: Down, .8
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1

4 Okay!

4 Okay!



Leader Elections: Win if everybody acks you

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1

0: Up, 1
1: Down, .8
2: Up, 1

0: Up, 1
1: Up, 1
2: Up, 1

4 I Won!

4 I Won!



Leader Elections: You can disallow monitors as leaders

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2

0: Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

0: Up, 1
1: Up, 1
2: Up, 1
Disallow: 2

5 Propose

5 Propose



Leader Elections: You can disallow monitors as leaders

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2

0: Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

0: Up, 1
1: Up, 1
2: Up, 1
Disallow: 2

5 Okay!



Leader Elections: You can disallow monitors as leaders

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2

0: Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

0: Up, 1
1: Up, 1
2: Up, 1
Disallow: 2

5 I Won!



Leader Elections: Connectivity Mode Can Ignore 
Out-of-Quorum Peers

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2

0: Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

0: Up, 1
1: Up, 1
2: Up, 1
Disallow: 2

Ping

Ping



Leader Elections: Connectivity Mode Can Ignore 
Out-of-Quorum Peers

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2

0: Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

0: Up, 1
1: Up, 1
2: Up, 1
Disallow: 2

5 Propose

Monitor 1 isn’t in 
quorum
and I won’t vote 
for him, drop!



Leader Elections: Connectivity Mode Can Ignore 
Out-of-Quorum Peers

1

0

2
0: Down, .8
1: Up, 1
2: Up, 1
Disallow: 2

0: Up, 1
1: Down, .8
2: Up, 1
Disallow: 2

0: Up, 1
1: Up, 1
2: Up, 1
Disallow: 2

Monitor 1 isn’t in 
quorum
and I won’t vote 
for him, drop!



Connectivity mode: Monitors are happy now

M M M



OSD Peering



OSD PEERING

● Primary queries old peers for data version
● When versions mismatch, primary asks for update logs
● Update logs tell primary which objects it needs
● Primary asks old peers for newest copies of all changed objects



OSD Peering: Get Newest Version

Version 5:
A

Version 8:
A
B
C
D

Version?



OSD Peering: Get Newest Version

Version 5(8):
A

Version 8:
A
B
C
D

Version 8



OSD Peering: Get Update Logs

Version 5(8):
A

Version 8:
A
B
C
D

Updates 6-8?



OSD Peering: Get Update Logs

Version 5(8):
A (BCD)

Version 8:
A
B
C
D

B C D



OSD Peering: Get Newest Objects

Version 5(8):
A (BCD)

Version 8:
A
B
C
D

Send B C



OSD Peering: Get Newest Objects

Version 7(8):
A
B
C (D)

Version 8:
A
B
C
D

Here’s B C



OSD Peering: Get Newest Objects

Version 7(8):
A
B
C (D)

Version 8:
A
B
C
D

Send D



OSD Peering: Get Newest Objects

Version 8:
A
B
C
D

Version 8:
A
B
C
D

Here’s D



● Generally 3 copies of all data
● “min size” required to serve IO: usually 2

○ So we can recover even if one of these guys fails — if we went active with 1 OSD and it died we 
are out of luck!

● OSDs know specific versions (nobody else sees all updates)
● ...but monitors know updates were ALLOWED

○ This is how we identify the old peers to collect data from

PEERING IN REAL LIFE



Peering: The Problem

M M M
1.0

1.1

2.0

2.1

Version 8

Version 8

Version 8

Version 8



Peering: The Problem

M M M
1.0

1.1

2.0

2.1

Version 8

Version 8

Version 8

Version 8



Peering: The Problem

M M M
1.0

1.1

2.0

2.1

Version 15

Version 13

Version 8

Version 13



Peering: The Problem

M M M
1.0

1.1

2.0

2.1

Version 15

Version 13

Version 8

Version 13



DEAD DC? OUCH!

● If we lose 1 of 2 data centers, the odds are good that the survivor has old data 
(and if it does, it always knows it)
○ MOST of the data will be current, but we need ALL of it!
○ Being out-of-date because of 1 rebooting OSD server? BAD :(

● Ceph is VERY careful not to roll back in time by mistake



DEAD DC SOLUTION: STRETCH MODE

● Design target: 2 data centers, 2 copies in each
● Restrict OSD<->monitor communications to within a single DC (no “rogue” 

OSDs talking to the tiebreaker monitor to stay alive-but-inaccessible)
● Extend the peering algorithm: an “acting set” must contain OSDs from 

multiple data centers to serve IO
○ Ensures survival of an OSD loss AND a data center loss!

This is in-progress



STRETCH MODE: HANDLING DC FAILURE

● OSDs only talk to their own-DC monitor(s)
● Require OSDs from multiple DCs
● Missing DCs? Missing data access :(

○ But NOT data loss! :)
● For 2-DC clusters, if a whole DC goes down:

○ Surviving DC and tiebreaker monitor declare DC dead
○ Remove multi-DC requirement from peering
○ Go active — we know we have newest data because every write had to go through our DC!



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 8

Version 8

Version 8



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 8

Version 8

Version 8



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 13

Version 8

Version 13

Data unavailable here: 
but in a real cluster, 
you’d have replicas and 
it would be fine



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 13

Version 8

Version 13



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 13

Version 8

Version 13



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 13

Version 8

Version 17



Stretch Cluster Peering: New Rules

M
M

M
1.0

1.1

2.0

2.1

Version 8

Version 13

Version 16

Version 21



The End
Questions?


