
FOSDEM 2020

Kernel Runtime Security Instrumentation

Florent Revest

Motivation

Our context

● Fleet of corporate Linux machines.

● Security monitoring and policies.

● Dynamic and scalable.

Example of signals

● A process that deletes its own executable.

● A Kernel module that loads and "hides" itself.

● "Suspicious" environment variables.

Example of mitigations

● Prevent known vulnerable binaries from running.

● Dynamic whitelist of known Kernel modules.

● Chain signals into a configurable MAC policy.

Current security landscape

MitigationSignals

Audit

Perf

SELinux, Apparmor

seccomp

Logs system’s behaviour Affects system’s behaviour

Update Audit
(user/kernel)
to log environment
variables

Adding a new signal

MitigationSignals

Audit

Perf

SELinux, Apparmor

seccomp

Update the mitigation logic for a
malicious actor with a known
LD_PRELOAD signature

Adding a new mitigation

MitigationSignals

Audit

Perf

SELinux, Apparmor

seccomp

Introducing KRSI

LSM (Linux Security Module)

● Basis of SELinux, AppArmor etc…
○ Years of research and verification.

● Various hooks for system security behaviours.
○ Higher level than syscalls.

● Return value allows or denies an operation.
○ MAC (Mandatory Access Control)

BPF (Berkeley Packet Filter)

● Bytecode JIT-ed into the kernel.

● Dynamically loaded with libbpf.

● Can be written in C.

● Statically verified (eg: read-only memory).

● Can exchange data with a userspace program.

BPF + LSM = KRSI

● Allows BPF programs attachment to LSM hooks.

● Dynamic MAC and Audit policies written in C.

● PATCHv3 on LKML

Usage example

Step 1: Hook into an appropriate LSM hook

SEC("lsm/file_mprotect")

int BPF_PROG(mprotect_example, struct vm_area_struct *vma,

 unsigned long reqprot, unsigned long prot)

{

 return 0;

}

Step 2: Use eBPF helpers

SEC("lsm/file_mprotect")

int BPF_PROG(mprotect_example, struct vm_area_struct *vma,

 unsigned long reqprot, unsigned long prot)

{

 __u32 pid = bpf_get_current_pid_tgid();

 return 0;

}

Step 3: Access structure fields with BTF

struct vm_area_struct {

 unsigned long vm_start;

} __attribute__((preserve_access_index));

SEC("lsm/file_mprotect")

int BPF_PROG(mprotect_example, struct vm_area_struct *vma,

 unsigned long reqprot, unsigned long prot)

{

 __u32 pid = bpf_get_current_pid_tgid();

 unsigned long vm_start = vma->vm_start;

 return 0;

}

Step 4: Share variables with userspace

int mprotect_count = 0;

struct vm_area_struct {

 unsigned long vm_start, vm_end;

} __attribute__((preserve_access_index));

SEC("lsm/file_mprotect")

int BPF_PROG(mprotect_example, struct vm_area_struct *vma,

 unsigned long reqprot, unsigned long prot)

{

 __u32 pid = bpf_get_current_pid_tgid();

 int vm_start = vma->vm_start;

 mprotect_count ++;

 return 0;

}

Step 5: Allow or deny an operation

int mprotect_count = 0;

struct vm_area_struct {

 unsigned long vm_start, vm_end;

} __attribute__((preserve_access_index));

SEC("lsm/file_mprotect")

int BPF_PROG(mprotect_example, struct vm_area_struct *vma,

 unsigned long reqprot, unsigned long prot)

{

 __u32 pid = bpf_get_current_pid_tgid();

 int vm_start = vma->vm_start;

 mprotect_count ++;

 return (mprotect_count > 100) ? -EPERM : 0;

}

Proprietary + Confidential

What will you build next?

Thank You

