
Userspace networking: beyond 
the kernel bypass with RDMA!

Using the RDMA infrastructure for performance while retaining kernel 
integration

30/01/2020 1

Benoît Ganne, bganne@cisco.com

mailto:bganne@cisco.com


Why a native network driver?

• Why userspace networking?
• Performance (avoid kernel overhead)
• Update network functions seamlessly (no reboot 

required, containerization)

• Why your own network driver?
• Performance (metadata translation tax, feature 

tax)
• Ease-of-use (no reliance on hugepages, etc.)

• Why you should think twice?
• No integration with kernel (interface fully owned 

by userspace)
• You care about rx/tx packets but device 

initialization & setup is 95% of the work
• Hardware is hard (more on that later) 0

2

4

6

8

10

12

14

16

18

M
p

p
s

VPP IPv4 forwarding PDR, 1core, 2M routes

Native DPDK

+23%

Source: https://docs.fd.io/csit/master/report/vpp_performance_tests/packet_throughput_graphs/ip4-2n-skx-xxv710.html

30/01/2020 2

https://docs.fd.io/csit/master/report/vpp_performance_tests/packet_throughput_graphs/ip4-2n-skx-xxv710.html


RDMA

• « Remote Direct Memory Access »
• Designed for message passing and 

data transfer
• Has evolved to use Ethernet transport 

(iWARP, RoCE)

• Key properties
• Hardware offload
• Kernel bypass
• Zero Copy data transfer
• High network bandwidth

➔ Great for kernel networking!
VPP

libibverb

RDMA uAPI

RNICHW

Kernel

User

D
M

A

30/01/2020 3



Extending RDMA for Ethernet

• Not designed for efficient Ethernet 
communication – but!
• Ethernet-capable HW (initially for 

transport)
• High performance (200Gbps today)
• Kernel bypass with well established API 

and native Linux kernel support

• Why not extend it to support 
userspace networking?
• Introduce new IBV_QPT_RAW_PACKET 

queue pair type
• Support for bifurcation with flow steering

• Keep your Linux netdev
• Support MACVLAN, IPVLAN model…

30/01/2020 4

VPP

libibverb

RDMA uAPI

RNICHW

Kernel

User

D
M

A

RDMA

Netstack

D
M

A

Incoming packets are steered to Linux
netdev or userspace application based on
flows



Using RDMA for Ethernet

How to send 20 Mpps with 1 CPU

1. Get a handle to the device you want to 
use

2. Initialize queues
• Queue Pair (QP) = Submission Queue (SQ) + 

Completion Queue (CQ)
• Protection Domain (PD) = where the NIC is 

allowed to read/write data (packets)

3. Send packets
• Put Work Queue Elements (WQE – kind of 

IOV) in SQ
• Notify new packets to send
• Poll CQ for completion

Full example at https://github.com/bganne/rdma-pktgen

30/01/2020 5

https://github.com/bganne/rdma-pktgen


Going deeper with Direct Verbs

• RDMA user API is ibverb
• Simple enough, mostly standard, 

open-source

• Not full performance (metadata 
translation tax, feature tax)

• Direct Verbs
• ibverb extension to access DMA 

ring-buffers directly

• Hardware-dependent! 

• Setup done through ibverb, then 
get DMA rings addresses

30/01/2020 6



VPP native RDMA driver

• ibverb version
• Available since 19.04

• ~ 20 Mpps L2-xconnect per core

• Direct Verb 
• Development underway

• Hardware is hard: while trying to debug my driver I almost bricked my NIC

• Next
• Add support for hardware offloads (checksum offload, TSO)

30/01/2020 7



A call to action

• We love this model
• No need to write code boilerplate to initialize the NIC: we can focus on what matters 

(rx/tx packets)
• Seamless integration with Linux kernel
• Great performance

• But is has limitations
• Need RDMA-capable NIC: must support Hardware security model, etc.
• Only supported on Mellanox for now

• Could other technologies enable this approach?
• Disclaimer: a bit outside of my domain knowledge here…
• vfio-mdev?
• AF_XDP?

30/01/2020 8


