Securing your daemons using systemd

Zbigniew Jędrzejewski-Szmek

zbyszek@in.waw.pl

FOSDEM, Brussels, 2020.2.2
About me

systemd upstream
Fedora (FESCo, systemd maint., Python SIG, Rust SIG)
Before we begin...
Why use systemd for this at all?

- centralization
- abstraction of hardware architecture / kernel version
- unprivileged operation
Before we begin...
Why use systemd for this at all?

- centralization
- abstraction of hardware architecture / kernel version
- unprivileged operation

Numbers:

```
$ dnf repoquery --releasever=32 -l --whatprovides \
    '/usr/lib/systemd/system/*' \ 
    rg -i '^-/usr/lib/systemd/system/[a-z0-9@.\-]+$' | \ 
    sort -u | wc -l
1740!!!
```
Before we begin...
Unit files
Before we begin...

Unit files

```bash
# /etc/systemd/system/mydaemon.service
[Service]
ExecStart=/usr/local/bin/mydaemon

$ sudo systemctl start mydaemon.service
```
Before we begin...

Unit files

/etc/systemd/system/mydaemon.service
[Service]
ExecStart=/usr/local/bin/mydaemon

$ sudo systemctl start mydaemon.service

$ sudo /usr/local/bin/mydaemon
Before we begin...

Unit files

```
# /etc/systemd/system/mydaemon.service
[Service]
ExecStart=/usr/local/bin/mydaemon

$ sudo systemctl start mydaemon.service

$ sudo /usr/local/bin/mydaemon

$ sudo systemd-run /usr/local/bin/mydaemon

$ sudo systemd-run -t /usr/local/bin/mydaemon
```
Basics

```
User=
```

```
systemd-run whoami
root
```

```
systemd-run --uid=zbyszek whoami
```

```
systemd-run -p User=zbyszek whoami
```

9 / 43
Basics

User=
Basics

User=

$ systemd-run whoami
root

$ systemd-run --uid=zbyszek whoami
zbyszek

$ systemd-run -p User=zbyszek whoami
zbyszek
Limiting access to the file system

- ProtectHome=yes|read-only
- ProtectSystem=yes|full|strict
Limiting access to the file system

- ProtectHome=yes|read-only
- ProtectSystem=yes|full|strict
- InaccessiblePaths=
- ReadOnlyPaths=
- ReadWritePaths=
Limiting access to the file system

- ProtectHome=yes|read-only
- ProtectSystem=yes|full|strict
- InaccessiblePaths=
- ReadOnlyPaths=
- ReadWritePaths=
- BindPaths=
- ReadOnlyBindPaths=
Limiting access to the file system

- PrivateTmp=yes
Limiting access to the file system
a better way
Limiting access to the file system
a better way

- RuntimeDirectory=foo
- StateDirectory=foo
- CacheDirectory=foo
- LogsDirectory=foo
- ConfigurationDirectory=foo
$ sudo systemd-run -t -p User=zbyszek \
 -p RuntimeDirectory=foo \
 ls -ld /run/foo

- automatic creation and ownership
- automatic removal
User creation on demand?
User creation on demand?

▶ DynamicUser=yes
User creation on demand?

- DynamicUser=yes

$ systemd-run -p DynamicUser=1 -t whoami
User creation on demand?

- DynamicUser=yes

$ systemctl-run -p DynamicUser=1 -t whoami
run-u215640
User creation on demand?

- DynamicUser=yes

$ systemd-run -p DynamicUser=1 -t whoami run-u215640

$ echo -e 'asdf\nasdf' | \

23 / 43
User creation on demand?

▶ DynamicUser=yes

$ systemd-run -p DynamicUser=1 -t whoami run-u215640

$ echo -e 'asdf\nasdf' | \
 systemd-run --pipe -p DynamicUser=1 \
 bash -c 'grep .; whoami' | \

User creation on demand?

- DynamicUser=yes

```
$ systemd-run -p DynamicUser=1 -t whoami
run-u215640
$
$ echo -e 'asdf\nasdf' | \
    systemd-run --pipe -p DynamicUser=1 \ 
    bash -c 'grep .; whoami' | \ 
$ systemd-run --pipe -p DynamicUser=1 \ 
    bash -c 'grep .; whoami' | \ 
```
User creation on demand?

▶ DynamicUser=yes

$ systemd-run -p DynamicUser=1 -t whoami
run-u215640
$ echo -e 'asdf\nasdf' | \
 systemd-run --pipe -p DynamicUser=1 \
 bash -c 'grep .; whoami' | \
$ systemd-run --pipe -p DynamicUser=1 \
 bash -c 'grep .; whoami' | \
$ systemd-run --pipe -p DynamicUser=1 \
 bash -c 'grep .; whoami'
What about the network?
What about the network?

- PrivateNetwork=yes
What about the network?

- PrivateNetwork=yes

“PrivateNetwork=yes is the recommended way to run network services”
Socket Activation

A daemon does not open a socket itself, it receives a socket from the manager.
Socket Activation

A daemon does not open a socket itself, it receives a socket from the manager

Two types of socket activation:

Accept=yes
→ a single instance of the service is started for each connection
→ “wait” under inetd/xinetd

Accept=no
→ a single instance of the service is started for each connection
→ “nowait” under inetd/xinetd
Per-service network firewall

- IP Address Allow = 10.20.30.0/24 1.2.3.4
- IP Address Deny = *
- IP{Ingress,Egress} Filter Path =

BPF!
Low-level stuff
MemoryDenyWriteExecute=yes
PrivateDevices=yes
NoNewPrivileges=yes
RestrictSUIDSGID=yes
ProtectKernelTunables=yes
ProtectClock=yes
ProtectHostname=yes
ProtectKernelLogs=yes
LockPersonality=yes
Capability limits

- CapabilityBoundingSet=
- Capability=
- DropCapability=
- AmbientCapabilities=
System call filtering

“seccomp mode 2”
System call filtering
“seccomp mode 2”

- `SyscallFilter=...`
 implemented using `libseccomp`
- `syscall1 | syscall2 | @group`
- `@basic-io`
- `@obsolete`
System call filtering
“seccomp mode 2”

- `SyscallFilter=...`
 implemented using `libseccomp`
- `syscall1 | syscall2 | @group`
- `@basic-io`
- `@obsolete`
- `SystemCallArchitectures=native|x86_64|i386|...`
- `RestrictAddressFamilies=AF_UNIX|AF_INET|AF_INET6 |AF_CAN|AF_APPLETALK|...`
System call filtering
“seccomp mode 2”

- SyscallFilter=...
 implemented using libseccomp
- syscall1 | syscall2 | @group
- @basic-io
- @obsolete

- SystemCallArchitectures=native|x86_64|i386|...
- RestrictAddressFamilies=AF_UNIX|AF_INET|AF_INET6
 |AF_CAN|AF_APPLETALK|...

$ systemd-analyze syscall-filter @obsolete
systemd-analyze security

$ systemd-analyze security systemd-resolved.service
Fedora 32: `systemd-analyze security *`
Stacking

the application
systemd sandboxing
selinux | apparmor | ...
kernel
The End

https://github.com/systemd/systemd
docs: https://systemd.io/
 https://www.freedesktop.org/wiki/Software/systemd/

this:
https://github.com/keszybz/systemd-security-talk/
blob/master/systemd-security.pdf