
FOSDEM 2020

io_uring in QEMU:
high-performance disk IO
for Linux

Julia Suvorova, Red Hat

Software Engineer

1

What we’ll
discuss today

Agenda

2

io_uring API

QEMU structure

Features of io_uring and how they helped
QEMU

Benchmarks

What left to do

QEMU I/O path

I/O path in VM

3

VM
Host

vHW
HW

userspace
userspace

kernel
kernel

QEMU drivervirtio-blk

QEMU I/O path

Existing solutions

4

Async I/O

▸ Linux AIO (aio=native)

▸ Thread pool (aio=threads)

Other

▸ NVME passthrough (vfio)

▸ SPDK

QEMU I/O path

I/O path in VM

5

 ----------------This part we can improve--------------

VM
Host

vHW
HW

userspace
userspace

kernel
kernel

QEMU drivervirtio-blk

io_uring interface

io_uring

6

Yet another kernel ring buffer

▸ New interface for truly asynchronous

communication with kernel: latest versions

support network and some other syscalls

▸ Part of linux 5.1

io_uring interface

Main features

7

▸ Unlike Linux AIO, separate queues for submission and

completion (sqes and cqes)

▸ Sqes and cqes are shared between userspace and kernel

▸ Async flush

Submission:
QEMU -> kernel -> hw

Completion:
QEMU <- kernel <- hw

io_uring interface

Interface

8

Three new system calls:

io_uring_setup(u32 entries, struct io_uring_params *p)

▸ Can choose different regimes

io_uring_enter(unsigned int fd,
 unsigned int to_submit,
 unsigned int min_complete,
 unsigned int flags,
 sigset_t *sig)

▸ Submit submissions and fetches completions within one syscall

(Not in Linux AIO!)

io_uring_register(unsigned int fd, unsigned int opcode,
 void *arg, unsigned int nr_args);

▸ Register fd ahead. No need to do fget() and fput() on each

submission and completion respectively

▸ Register buffers (struct iovec) ahead. Saves get_user_pages()

and put_pages()

io_uring interface

How fast is it?

9

Benchmarks on bare metal

Test with fio 3.14:
aio=libaio
operation=randread

NVMe SSD Intel
Optane 320G
CPU Intel Xeon Silver
2.20GHz

io_uring inside QEMU

Integration into QEMU

10

What’s done:

▸ Outreachy project idea

▸ Implemented by Aarushi Mehta

▸ Basic functionality is merged upstream (will be in QEMU 5.0)

Known issues:

▸ Problems with file locking in fd registration

▸ IOPOLL is not implemented

io_uring inside QEMU

Integration into QEMU

11

Reuse Linux AIO approach

Qemu event loop is based on AIO context (future improvement: can be

switched to io_uring)

Add aio context -> use epoll for completion check

Now we submit requests with io_uring_enter() and check completions on irq

Liburing usage:

Easier to use, less mistakes

io_uring inside QEMU

Integration into QEMU

12

How to launch

-drive file=test.img,format=raw,cache=none,aio=io_uring

Works with both IO_DIRECT and cache workload

io_uring inside QEMU

How fast has it got without extra features?

13

Test with fio 3.14:
aio=libaio
operation=randread

NVMe SSD Intel
Optane 320G
CPU Intel Xeon Silver
2.20GHz

Features and benchmarks

Fd registration

14

Register set of fd on which I/O is operated with

io_uring_register()

Saves atomic fget() on submission path

Saves atomic fput() on completion path

Features and benchmarks

Does this help much?

15

Not really by itself

Test with fio 3.14:
aio=libaio
operation=randread

NVMe SSD Intel
Optane 320G
CPU Intel Xeon Silver
2.20GHz

Features and benchmarks

Submission polling

16

Run a kernel thread to wait for submissions, need to wake up

with syscall

io_uring_setup() with flag SQ_POLL

Needs fd registration for effective usage

Now we submit requests without syscall and get completions on

irq - path without syscalls

Features and benchmarks

Completion polling

17

Poll completions with busy waiting on io_uring_enter()

io_uring_setup() with

CPU consuming, but no context switching

In combination with SQ_POLL - the fastest way on heavy

workloads

Features and benchmarks

Performance

18 Source:
Insert source data here
Insert source data here
Insert source data here

Not implemented yet

In someone’s todo

Future improvements

19

Merge SQ_POLL and fd registration

File buffers registration and IO_POLL

Switch to io_uring as default aio (if supported)

Ideas:

Switch main loop to io_uring

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

20

Questions?

