
Public clouds and vulnerable
CPUs: are we secure?
FOSDEM 2020

Vitaly Kuznetsov <vkuznets@redhat.com>

mailto:vkuznets@redhat.com

About myself

About

● Focusing (mostly) on Linux kernel
● My areas of interest include:

○ Linux as guest on public clouds (AWS, Azure, Aliyun,...)
○ Linux as guest on Hyper-V
○ Hyper-V Enlightenments in KVM
○ Running nested KVM on Hyper-V
○ Running nested Hyper-V on KVM

Speculative vulnerabilities discovered in the past few years:

Speculative vulnerabilities

● Spectre v1
○ SWAPGS

● Spectre v2
● Meltdown (Spectre v3)
● SSB (Spectre v4/NG)
● L1TF (AKA Foreshadow/Spectre v5)
● MDS & TAA

Speculative Execution Side Channel Methods

Speculative vulnerabilities

Intel:

“The concept behind speculative execution is that instructions are executed ahead of knowing
that they are required. [...] By executing instructions speculatively, performance can be increased
by minimizing latency and extracting greater parallelism.
….
While speculative operations do not affect the architectural state of the processor, they can affect
the microarchitectural state, such as information stored in Translation Lookaside Buffers (TLBs)
and caches.
...
A side channel method works by gaining information through observing the system, such as by
measuring microarchitectural properties about the system. Unlike buffer overflows and other
vulnerability classes, side channels do not directly influence the execution of the program, nor do
they allow data to be modified or deleted.
”

When running on a public cloud

Speculative vulnerabilities and public clouds

… but my cloud provider tells me they’ve patched everything and I don’t need
to worry, is this so?

Types of attacks:

Speculative vulnerabilities and public clouds

● VM to VM

● VM to Host (hypervisor)￼

● in-VM: userspace to kernel

● in-VM: userspace to userspace

Types of attacks:

Speculative vulnerabilities and public clouds

● VM to VM

● VM to Host (hypervisor)￼

● in-VM: userspace to kernel

● in-VM: userspace to userspace

Of paramount
importance to cloud
providers!

Types of attacks:

Speculative vulnerabilities and public clouds

● VM to VM

● VM to Host (hypervisor)￼

● in-VM: userspace to kernel

● in-VM: userspace to userspace

Of paramount
importance to cloud
providers!

Outside of cloud
providers’
responsibility
domain
(but they need to
provide the required
tools for guests!)

Things to consider for in-VM attacks

Speculative vulnerabilities

● Are you running a multi-tenant environment?
● Are you running (even in containers) untrusted code?
● Is this a ‘multi-task’ or a ‘single task’ VM?
● Are you relying on language-based security (e.g. running JITed untrusted

code)?
● Is it acceptable to disable SMT (Hyperthreading)?
●

CPU vulnerabilities
caused by
“speculative
execution”

Spectre v1 (Bounds Check Bypass, CVE-2017-5753)

Speculative vulnerabilities

Caller-controlled offset

Spectre v1

Speculative vulnerabilities

● Hardware
○ No microcode update needed

● VM-to-VM and VM-to-hypervisor attacks:
○ Cloud provider fixes the hypervisor on a case by case basis (all

potentially vulnerable places)

● In-VM attacks:

$ cat /sys/devices/system/cpu/vulnerabilities/spectre_v1
Mitigation: usercopy/swapgs barriers and __user pointer sanitization

● Fixed in the kernel on a case by case basis. Keep yours updated!

SWAPGS (Spectre v1 variant, CVE-2019-1125)

Speculative vulnerabilities

● Speculation related to GS segment switch (per-CPU data)
● Software mitigation is needed for (almost) all current CPUs
● Future CPUs may fix the bug in hardware (NO_SWAPGS)

Spectre v2 (Branch Target Injection, CVE-2017-5715)

Speculative vulnerabilities

Indirect branch call
(mis)trained branch
predictor

Spectre v2 (Branch Target Injection, CVE-2017-5715)

Speculative vulnerabilities

● Hardware support (microcode update) in combination with software
techniques required for mitigations

● Hardware:
○ IBRS: don’t speculate in certain (privileged) contexts
○ Enhanced IBRS: tag branch target buffer (BTB)
○ STIBP: don’t share BTB across CPU threads (for existing CPUs:

just turn it off)
■ BTB may be shared across hyperthreads!

○ IBPB: clear BTB when switching between tasks
● Software: retpoline, RSB filling

Spectre v2: hypervisor protection

Speculative vulnerabilities

● VM-to-VM attacks:
○ Not possible with fully dedicated cores (most instance types)
○ SMT: core scheduling for VMs

● VM-to-hypervisor attacks:
○ Hypervisor itself needs to be protected (retpoline or IBRS)
○ SMT: protect with hardware features (IBRS/STIBP) or parallel threads

should be blocked while in hypervisor context

Spectre v2: guest protection

Speculative vulnerabilities

$ cat /sys/devices/system/cpu/vulnerabilities/spectre_v2
Mitigation: Full generic retpoline, IBPB: conditional, IBRS_FW, STIBP:
conditional, RSB filling

● Userspace-to-kernel attacks:
○ Enhanced IBRS (IBRS_ALL) or retpoline

● Userspace-to-userspace attacks:
○ spectre_v2_user=on/off/prctl/prctl,ibpb/seccomp/seccomp,ibpb/auto

depending on your needs!
○ Hardware features: STIBP and IBPB need to be exposed to the guest

(check your /proc/cpuinfo)
○ “nosmt” can be used instead of STIBP (may give a better performance

in some cases)

Meltdown (Rogue data cache load, CVE-2017-5754)

Speculative vulnerabilities

 Page table

user

user

user

kernel

kernel

Read from userspace

Meltdown

Speculative vulnerabilities

● Hardware
○ No microcode update needed for mitigation
○ Future CPUs may get fixed (RDCL_NO)

● VM-to-VM and VM-to-hypervisor attacks:
● Only Xen PV is (was) vulnerable

● In-VM attacks:

$ cat /sys/devices/system/cpu/vulnerabilities/meltdown
Mitigation: PTI

Speculative Store Bypass (SSB, CVE-2018-3639)

Speculative vulnerabilities

attacker memory
address

“slow” write

“fast” read

Speculative Store Bypass: hypervisor protection

Speculative vulnerabilities

● Hardware:
○ Microcode update required for mitigations (SSBD, VIRT_SSBD - AMD

only)
○ SMT: SSB may be per-core!
○ Future CPUs may get fixed (NO_SSB)

● VM-to-VM and VM-to-hypervisor attacks:
● Don’t seem to be possible

Speculative Store Bypass: guest protection

Speculative vulnerabilities

● In-VM-attacks:
● “Language-based security environments” (e.g. JIT) are at highest risk,

e.g. javaws executing untrusted code.
● ‘ssbd’ cpu feature required for mitigation

$ cat /sys/devices/system/cpu/vulnerabilities/spec_store_bypass
Mitigation: Speculative Store Bypass disabled via prctl and seccomp

● ssbd=force-on/force-off/kernel

L1 Terminal Fault (L1TF, Foreshadow, CVE-2018-3615,
CVE-2018-3620, CVE-2018-3646)

Speculative vulnerabilities

 Page table

PTE

PTE

PTE

!Present

Reserved

Read
Data

Data

Data

Data

Data

L1 Terminal Fault: hypervisor protection

Speculative vulnerabilities

● Hardware
○ Microcode update required for more effective mitigation on hypervisors

(“flush_l1d”)
○ Future CPUs may get fixed (RDCL_NO)

● VM-to-VM attacks:
○ Not possible with dedicated cores (most instance types)
○ Core scheduling + L1D flush should be utilized when cores are shared

(L1D is per core)

● VM-to-hypervisor attacks:
○ Core scheduling/simultaneous exit + L1D flush

L1 Terminal Fault: guest protection

Speculative vulnerabilities

● In-VM attacks:

$ cat /sys/devices/system/cpu/vulnerabilities/l1tf
Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT
vulnerable

○ Software-based mitigation (PTE inversion) against userspace-to-kernel
attacks, always enabled

○ l1tf=full/full,force/flush/flush,nosmt/flush,nowarn/off only applies if
you’re running VMs (on public clouds: likely nested)

Microarchitectural Data Sampling (MDS, CVE-2018-12126,
CVE-2018-12127, CVE-2018-12130, CVE-2019-11091) and

TSX Asynchronous Abort (CVE-2019-11135)

Speculative vulnerabilities

Fill buffer

Load ports

Store buffer

Uncacheable memory

MDS & TAA

Speculative vulnerabilities

● Hardware
○ Future hardware is expected to get fixed:

■ MFBDS: RDCL_NO
■ MFBDS/MSBDS/MLPDS/MDSUM: MDS_NO
■ TAA: TAA_NO

○ Existing hardware: microcode update required for mitigating (check for
“md_clear”)

● VM-to-VM attacks:
○ Not possible with dedicated cores (most instance types)
○ Core scheduling + MD_CLEAR should be utilized when cores are shared

● VM-to-hypervisor attacks:
○ Core scheduling/simultaneous exit + MD_CLEAR

MDS & TAA

Speculative vulnerabilities

● In-VM attacks:

$ cat /sys/devices/system/cpu/vulnerabilities/mds
Mitigation: Clear CPU buffers; SMT vulnerable

$ cat /sys/devices/system/cpu/vulnerabilities/tsx_async_abort
Mitigation: Clear CPU buffers; SMT vulnerable

○ ‘md_clear’ feature needed for effective mitigation
■ State is unknown if absent, Linux still tries

○ SMT: no protection
■ Manual CPU pinning or “core scheduler” (not yet upstream) may

help to certain extent (userspace-to-userspace but not
userspace-to-kernel)

■ Use “nosmt” for ultimate protection

Other CPU
vulnerabilities

ITLB_MULTIHIT (MCE on Page Size change, CVE-2018-12207)

Other vulnerabilities

Page tablesiTLB

4k page

Instruction
fetch

Linear
address

2M page
1G page

ITLB_MULTIHIT

Other vulnerabilities

● Hardware
○ No microcode update needed
○ Future hardware is expected to get fixed (PSCHANGE_MC_NO)

● VM-to-VM and VM-to-hypervisor attacks:
○ Malicious guest can cause DoS
○ Cloud provider fixes the hypervisor by disabling huge pages (EPT) or by

making them non-executable

● In-VM attacks:
○ Not possible, userspace can not trigger page size change
○ Nested hypervisors don’t need additional mitigations.

Examples

AWS

Examples

● Instance type: r5n.large, CPU: Intel(R) Xeon(R) Platinum 8259CL CPU @
2.50GHz

● /sys/devices/system/cpu/vulnerabilities:

itlb_multihit: KVM: Vulnerable
l1tf: Mitigation: PTE Inversion
mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state

unknown
meltdown: Mitigation: PTI
spec_store_bypass: Vulnerable
spectre_v1: Mitigation: usercopy/swapgs barriers and __user pointer

sanitization
spectre_v2: Mitigation: Full generic retpoline, STIBP: disabled, RSB

filling
tsx_async_abort: Not affected

AWS

Examples

● Instance type: r5n.large, CPU: Intel(R) Xeon(R) Platinum 8259CL CPU @
2.50GHz

● /sys/devices/system/cpu/vulnerabilities:

itlb_multihit: KVM: Vulnerable
l1tf: Mitigation: PTE Inversion
mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state

unknown
meltdown: Mitigation: PTI
spec_store_bypass: Vulnerable
spectre_v1: Mitigation: usercopy/swapgs barriers and __user pointer

sanitization
spectre_v2: Mitigation: Full generic retpoline, STIBP: disabled, RSB

filling
tsx_async_abort: Not affected

<- Irrelevant (no support for KVM)
<- Mitigated

<- Unknown, presumably mitigated
<- Mitigated

<- No mitigation available!
<- Mitigated

<- No mitigation (for userspace) available!
<- CPU not affected (features turned off)

Azure

Examples

● Instance type: F8s_v2, CPU: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
● /sys/devices/system/cpu/vulnerabilities:

itlb_multihit: KVM: Mitigation: Split huge pages
l1tf: Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT

vulnerable
mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state

unknown
meltdown: Mitigation: PTI
spec_store_bypass: Vulnerable
spectre_v1: Mitigation: usercopy/swapgs barriers and __user pointer

sanitization
spectre_v2: Mitigation: Full generic retpoline, STIBP: disabled, RSB

filling
tsx_async_abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT

Host state unknown

Azure

Examples

● Instance type: F8s_v2, CPU: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
● /sys/devices/system/cpu/vulnerabilities:

itlb_multihit: KVM: Mitigation: Split huge pages
l1tf: Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT

vulnerable
mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state

unknown
meltdown: Mitigation: PTI
spec_store_bypass: Vulnerable
spectre_v1: Mitigation: usercopy/swapgs barriers and __user pointer

sanitization
spectre_v2: Mitigation: Full generic retpoline, STIBP: disabled, RSB

filling
tsx_async_abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT

Host state unknown

<- Superfluous mitigation

<- Mitigated (but SMT still vulnerable)

<- Unknown, presumably mitigated
<- Mitigated

<- No mitigation available!

<- Mitigated

<- No mitigation (for userspace) available!

<- Unknown, presumably mitigated

GCE

Examples

● Instance type: N2, CPU: Intel(R) Xeon(R) Cascade Lake @ 2.80GHz
● /sys/devices/system/cpu/vulnerabilities:

itlb_multihit: KVM: Vulnerable
l1tf: Not affected
mds: Mitigation: Clear CPU buffers; SMT Host state unknown
meltdown: Not affected
spec_store_bypass: Mitigation: Speculative Store Bypass disabled via prctl

and seccomp
spectre_v1: Mitigation: usercopy/swapgs barriers and __user pointer

sanitization
spectre_v2: Mitigation: Enhanced IBRS,

 IBPB: conditional, RSB filling
tsx_async_abort: Mitigation: Clear CPU buffers; SMT Host state unknown

GCE

Examples

● Instance type: N2, CPU: Intel(R) Xeon(R) Cascade Lake @ 2.80GHz
● /sys/devices/system/cpu/vulnerabilities:

itlb_multihit: KVM: Vulnerable
l1tf: Not affected
mds: Mitigation: Clear CPU buffers; SMT Host state unknown
meltdown: Not affected
spec_store_bypass: Mitigation: Speculative Store Bypass disabled via prctl

and seccomp
spectre_v1: Mitigation: usercopy/swapgs barriers and __user pointer

sanitization
spectre_v2: Mitigation: Enhanced IBRS,
 IBPB: conditional, RSB filling
tsx_async_abort: Mitigation: Clear CPU buffers; SMT Host state unknown

<- Most likely mitigated on the host
<- Unaffected

<- Mitigated
<- Unaffected

<- Mitigation available

<- Mitigated

<- Mitigation available

<- Mitigated

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you!

