
Cryptographic protocol analysis

for students and engineers

Nadim Kobeissi

FOSDEM Brussels, February 2020

Verifpal

What is Formal Verification?

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
1

• Using software tools in order to obtain guarantees on the security of

cryptographic components.

• Protocols have unintended behaviors when confronted with an active

attacker: formal verification can prove security under certain active attacker

scenarios!

• Primitives can act in unexpected ways given certain inputs: formal

verification: formal verification can prove functional correctness of

implementations!

Formal Verification Today

Protocols: ProVerif, Tamarin

• Take models of protocols (Signal,

TLS) and find contradictions to
queries.

• “Can the attacker decrypt Alice’s first

message to Bob?”

• Are limited to the “symbolic model”,

CryptoVerif works in the
“computational model”.

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
2

Code and Implementations: F*

• Exports type checks to the Z3 theorem

prover.

• Can produce provably functionally

correct software implementations of

primitives (e.g. Curve25519 in

HACL*).

• Can produce provably functionally
correct protocol implementations

(Signal*).

Symbolic Verification Overview

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
3

• Main tools: ProVerif, Tamarin.

• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,

• TLS 1.3 session between a server and a bunch of clients,

• ACME for Let’s Encrypt (with domain name ownership confirmation…)

• User writes queries:

• “Can someone impersonate the server to the clients?”

• “Can a client hijack another client’s simultaneous connection to the server?”

• ProVerif and Tamarin try to find contradictions.

Symbolic Verification is
Wonderful

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
4

• Many papers published in the past 4 years: symbolic verification proving

(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G

and much more!

• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

Why isn’t it used more?

Tamarin and ProVerif: Examples

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
5

rule Get_pk:

[!Pk(A, pk)]

-->

[Out(pk)]

// Protocol

rule Init_1:
[Fr(~ekI), !Ltk($I, ltkI)]

-->

[Init_1($I, $R, ~ekI)

, Out(<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI }ltkI>)]

rule Init_2:

let Y = 'g' ^ z // think of this as a group element check

in

[Init_1($I, $R, ~ekI)

, !Pk($R, pk(ltkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)

]

--[SessionKey($I,$R, Y ^ ~ekI)

, ExpR(z)

]->

[InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,

hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key, re:key,
psk:key, initiator:bool) = handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring) = (empty,
empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in

let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in

let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>

(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||

((event(LeakS(phase0, alice))) && (event(LeakPsk(phase0, alice,
bob)))) || ((event(LeakS(phase0, bob))) &&

(event(LeakPsk(phase0, alice, bob))));

ProVerif

Tamarin

(also not fully

automated)

Verifpal: A New
Symbolic Verifier

1. An intuitive language for modeling

protocols.

2. Modeling that avoids user error.

3. Analysis output that’s easy to

understand.

4. Integration with developer

workflow.

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
6

A New Approach to Symbolic
Verification

…without losing strength

• Can reason about advanced protocols

(eg. Signal, Noise) out of the box.

• Can analyze for forward secrecy, key

compromise impersonation and other

advanced queries.

• Unbounded sessions, fresh values, and

other cool symbolic model features.

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
7

User-focused approach…

• An intuitive language for modeling

protocols.

• Modeling that avoids user error.

• Analysis output that’s easy to

understand.

• Integration with developer workflow.

Verifpal Language: Simple and
Intuitive

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
8

Verifpal Language: Primitives

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
9

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested

in their own primitives (use ProVerif,

it’s great!)

Verifpal Language: Primitives

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
10

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested

in their own primitives (use ProVerif,

it’s great!)

Verifpal Language: Primitives

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
11

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested

in their own primitives (use ProVerif,

it’s great!)

Signal in Verifpal: State
Initialization

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
12

• Alice wants to initiate a chat with Bob.

• Bob’s signed pre-key and one-time pre-

key are modeled.

Signal in Verifpal: Key Exchange

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
13

• Alice receives Bob’s key information

and derives the master secret.

Signal in Verifpal: Messaging

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
14

Signal in Verifpal: Queries and
Results

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
15

• Typical confidential and authentication

queries for messages sent between

Alice and Bob.

• All queries pass! No contradictions!

• Not surprising: Signal is correctly
modeled, long-term public keys are

guarded; signature verification is

checked.

Protocols Analyzed with Verifpal

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
16

• Signal secure messaging

protocol.

• Scuttlebutt decentralized

protocol.

• ProtonMail encrypted

email service.

• Telegram secure

messaging protocol.

Verifpal in the Classroom

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
17

• Verifpal User Manual: easiest way to

learn how to model and analyze protocols

on the planet.

• NYU test run: huge success. 20-year-old

American undergraduates with no

background whatsoever in security

were modeling protocols in the first two

weeks of class and understanding

security goals/analysis results.

Verifpal in the Classroom

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
18

• Upcoming Eurocrypt 2020 affiliated

event:

https://verifpal.com/eurocrypt2020/ –

Verifpal tutorial!

• Verifpal has a place in your

undergraduate classroom and will do a

better job teaching students about

protocols and models than anything else

in the world.

https://verifpal.com/eurocrypt2020/

Verifpal Extensions

Verifpal: Cryptographic protocol analysis for

students and engineers – Nadim Kobeissi
19

• Visual Studio Code: currently syntax

highlighting, but much more planned in

the future.

• Vim: syntax highlighting.

Try Verifpal Today

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi

20

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:

verifpal.com

Support Verifpal development:

verifpal.com/donate

