
Check Yourself Before
You Wreck Yourself
Auditing and Improving the Performance of Boomerang

Nic Jansma
njansma@akamai.com
@nicj

mailto:njansma@akamai.com

Why are we here today?

● Boomerang: an open-source Real User Monitoring

(RUM) third-party library

○ https://github.com/akamai/boomerang

● Why performance matters to us

● Performance Audit

● Improvements!

● Testing, Validation, Protecting against Regressions

https://github.com/akamai/boomerang

Why should you care?

● Do you develop a library that other teams, companies or projects use?

● Do you use a third-party library?
○ Any library that you didn't write

○ They might be packaged in your application’s JavaScript bundle, included via a cross-origin
<script> tag, or injected via a tag manager.

Boss: Developer, please add this fancy new script!

<script async src="//cdn.remarketing.com/js/foo.min.js"></script>

What could go wrong? It’s just one simple line!

<script async src="//cdn.remarketing.com/js/foo.min.js"></script>

That one little line can:

● Cause your page to stop loading
● Slow down other components
● Create incompatibilities with other libraries
● Change from underneath you
● Take total control of your site

What can go wrong?

Boomerang

● 14,000+ mPulse sites
○ > 1 billion page loads a day

● 76,000 - 460,000 sites using open-source boomerang.js (estimate)

https://discuss.httparchive.org/t/who-are-the-top-rum-analytics-providers/

https://trends.builtwith.com/javascript/Boomerang

https://discuss.httparchive.org/t/who-are-the-top-rum-analytics-providers/
https://trends.builtwith.com/javascript/Boomerang

“Everything should have a value, because everything has a cost” - @tkadlec

How can we judge the cost of a script?

$ ls -al modernizr.js*

-rw-r--r--@ 1 nicjansma staff 92,475 May 30 20:20 modernizr.js

-rw-r--r-- 1 nicjansma staff 32,599 May 30 20:21 modernizr.js.gz

… it’s... cheap???

Evaluating the Cost of a 3rd Party

https://twitter.com/tkadlec

A third-party’s size (bytes) contributes to the overall Page Weight.

Page Weight is important - it has an effect on how long the page takes to load,
especially on lower-end devices or slower connections.

Lowering the Page Weight can improve load times, so you want to factor the
byte cost of a third-party into your overall Performance Budget.

… but while it’s the easiest way to judge a third party, it’s just one aspect of the
overall cost.

Resource Weight

A 3rd-Party Script’s Lifecycle & Costs

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

Boomerang Performance Audit

Boomerang Performance Audit

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

A 3rd-Party Script’s Lifecycle

Critical path!

1. Script tag itself has no cost: <script

src="..."></script>

2. Snippets have a cost (2-10ms on desktop

Chrome):

<script type="text/javascript">

(function() {

 var po = document.createElement('script');

 po.type = 'text/javascript'; po.async = true;

 po.src = 'https://.../foo.js';

 var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(po, s);

})();

</script>

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

Boomerang's Loader Snippet

3. Boomerang's Loader Snippet

Completely async and non-blocking

Better than <script async>

Cost: 2-40ms

More expensive than <script>, but guaranteed

to not block

https://akamai.github.io/boomerang/tutorial-loader-snippet.html

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

https://akamai.github.io/boomerang/tutorial-loader-snippet.html

A 3rd-Party Script’s Lifecycle

Every byte affects overall page weight.

Critical path?

● External <script> / tag: no (unless sharing

domain)

● Bundled with other components: yes?

Load from a CDN!

The script may load additional resources.

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

A 3rd-Party Script’s Lifecycle

//requestmap.webperf.tools

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

A 3rd-Party Script’s Lifecycle

● underscore.js 7 KB

● Google Analytics 14 KB

● moment 16 KB

● jQuery 29 KB

● React 32 KB

● Twitter 34 KB

● Boomerang 47 KB

● Angular 59 KB

● D3 71 KB

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

Boomerang is built with a plug-in architecture and you

can build smaller builds if you'd prefer.

For example, if you don't need: SPA, XHR, UserTiming

or Error Tracking support Boomerang shrinks from 47

KB to 26 KB.

A 3rd-Party Script’s Lifecycle

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

A 3rd-Party Script’s Lifecycle

Critical path!

After being fetched, the browser must parse / compile

the (decompressed) JavaScript before it’s executed.

Less bytes = less parse / compile.

● Moment 5 ms 143 KB

● Boomerang 10 ms 188 KB

● Twitter Widget 10 ms 227 KB

● jQuery 11 ms 265 KB

● Angular 22 ms 1291 KB

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

A 3rd-Party Script’s Lifecycle

Critical path!

Many scripts will initialize (do some work) at startup -

create structures, globals, hook events, etc.

● moment 2 ms

● jQuery 9 ms

● Boomerang 10 ms

● Angular 12 ms

● Twitter Widget 20 ms

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

Critical path!

The library should be there for a reason.

This reason will do work periodically or based on

user interactions.

● SPA framework updating the view after a

route change

● Analytics scripts sending beacons

● Charting library responding to user

interactions

A 3rd-Party Script’s Lifecycle

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

Boomerang: depending on the site, 10-40ms at

onload

Upwards of 300ms on resource-heavy sites on

low-end devices

A 3rd-Party Script’s Lifecycle

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

Critical path!

All bold could be done on the main thread

(depending on the browser) and can can cause

Long Tasks.

A 3rd-Party Script’s Lifecycle

1. Loader Snippet / <script>

2. Download

3. Parse + Compile

4. Initialize

5. Runtime / event handlers

A task is work the browser is doing to build the page, such as parsing HTML,
executing JavaScript, or performing layout. This happens on the main thread.

The browser cannot respond to user input (clicking, scrolling, etc) while
executing a task.

Long Tasks are due to complex work that requires more than 50ms of
execution time. i.e. parsing or executing complex JavaScript.

Long Tasks will delay Time to Interactive - the point at which your app is
responsive.

Long Tasks and Time to Interactive

Boomerang’s Performance Audit

https://nicj.net/an-audit-of-boomerangs-performance/

TL;DR boomerang’s 2018 cost (high-end to low-end devices):

1. Loader Snippet 2 - 40 ms
2. Download 188 KB raw / 47 KB gzip (non-blocking)
3. Parse 6 - 47 ms
4. Initialize 3 - 15 ms
5. @onload 10 - 300 ms
6. Beacon 2 - 20 KB
7. Runtime minimal

Tracking improvements @ https://github.com/akamai/boomerang/issues

Performance Audit Tools

Developer tools are your friend!

Profilers can point to opportunities

My advice:

● Take your time
● Get a sense for the overall picture
● Look for extremes - longest

duration, tallest stack

Chrome Lighthouse

developers.google.com
/web/tools/lighthouse/

Evaluating for Performance
RequestMap

requestmap.webperf.tools

WebPagetest

webpagetest.org

3rdParty.io

3rdparty.io

Boomerang’s Performance Audit

https://nicj.net/an-audit-of-boomerangs-performance/

We found room for improvement! Filed 15 issues. Examples:

● ResourceTiming Compression is expensive
● Loader Snippet Performance in Edge
● Breakup plugin creation / initialization to avoid long tasks
● Beacon: Review cookie access
● Beacon: Memory: Node counting is expensive
● Unload beacon size
● Unload Beacon: Memory plugin updating DOM counts

Tracking improvements @ https://github.com/akamai/boomerang/issues

https://nicj.net/boomerang-performance-update/

● New Loader Snippet
● ResourceTiming Optimization
● Removed Debug Messages
● Improved Minification
● Reduced Cookie Size
● Reduced Cookie Access
● Simplified MD5 plugin
● Simplified SPA plugin
● Enabled Brotli for CDN

Boomerang’s Performance Improvements

Using <link rel="preload"> we can load
async and non-blocking without an IFRAME

Reduced 2-40ms to 1ms for browsers that
support Preload!

https://nicj.net/boomerang-performance-update/

https://nicj.net/boomerang-performance-update/

● New Loader Snippet
● ResourceTiming Optimization
● Removed Debug Messages
● Improved Minification
● Enabled Brotli for CDN
● Reduced Cookie Size
● Reduced Cookie Access
● Simplified MD5 plugin
● Simplified SPA plugin

Boomerang’s Performance Improvements

Compressing ResourceTiming data was our most
expensive task

Tweaked the algorithm slightly to be
slightly-less-than-perfect for a 4x speedup

Reduced some sites' cost from 100ms to 25ms
or 300ms to 75ms

https://nicj.net/boomerang-performance-update/

https://nicj.net/boomerang-performance-update/

● New Loader Snippet
● ResourceTiming Optimization
● Removed Debug Messages
● Improved Minification
● Enabled Brotli for CDN
● Reduced Cookie Size
● Reduced Cookie Access
● Simplified MD5 plugin
● Simplified SPA plugin

We were shipping debug log messages even
though the debug log was disabled (6% saving)

Changed from Uglify2 to Uglify3 (1.3% saving)

Enabled Brotli on the Akamai CDN (11.2% saving)

SPA and MD5 plugins refactored (2.8% saving)

Boomerang’s Performance Improvements

https://nicj.net/boomerang-performance-update/

https://nicj.net/boomerang-performance-update/

● New Loader Snippet
● ResourceTiming Optimization
● Removed Debug Messages
● Improved Minification
● Enabled Brotli for CDN
● Reduced Cookie Size
● Reduced Cookie Access
● Simplified MD5 plugin
● Simplified SPA plugin

Boomerang’s Performance Improvements

We set a cookie to track sessions

Changed how we stored some of the data (e.g.
hash instead of a full URL, Base36 instead of
Base10 for numbers): 41% smaller

We were reading/writing constantly during
startup -- simplified our operations from 21 reads
and 8 writes down to 2 reads and 4 writes

https://nicj.net/boomerang-performance-update/

https://nicj.net/boomerang-performance-update/

● New Loader Snippet
● ResourceTiming Optimization
● Removed Debug Messages
● Improved Minification
● Enabled Brotli for CDN
● Reduced Cookie Size
● Reduced Cookie Access
● Simplified MD5 plugin
● Simplified SPA plugin

Boomerang’s Performance Improvements

We were using MD5 for hashing and comparing
URLs quickly

This plugin took 8.1 KB and could hash 35,397
URLs/sec

We replaced with the FNV algorithm: 0.34 KB and
113,532 URLs/sec

SPA plugin was simplified and removed
framework-specific support in favor of just
monitoring the window.History object

https://nicj.net/boomerang-performance-update/

Boomerang’s Performance Audit

https://nicj.net/boomerang-performance-update/

After fixes:

1. Loader Snippet 2 - 40 ms 1-20 ms (1 ms in modern browsers)
2. Download 188 KB raw / 47 KB gzip 196 KB raw / 47 KB brotli
3. Parse 6 - 47 ms (same)
4. Initialize 3 - 15 ms (same)
5. @onload 10 - 300 ms 5-75 ms
6. Beacon 2 - 20 KB (same)
7. Runtime minimal

Tracking improvements @ https://github.com/akamai/boomerang/issues

https://nicj.net/boomerang-performance-update/

Boomerang’s Performance Audit

https://nicj.net/boomerang-performance-update/

Opportunities!

1. Loader Snippet 2 - 40 ms 1-20 ms (1 ms in modern browsers)
2. Download 188 KB raw / 47 KB gzip 196 KB raw / 47 KB brotli
3. Parse 6 - 47 ms (same)
4. Initialize 3 - 15 ms (same)
5. @onload 10 - 300 ms 5-75 ms
6. Beacon 2 - 20 KB (same)
7. Runtime minimal

Tracking improvements @ https://github.com/akamai/boomerang/issues

https://nicj.net/boomerang-performance-update/

Continuous, Gradual Improvement

In a mature product with a healthy process you're much more likely to see a 50%
gain come in the form of many 5% gains compounding to get to your goal via
sustained effort and quality control

https://docs.microsoft.com/en-us/archive/blogs/ricom/the-performance-war-win-it-5-at-a-time

https://docs.microsoft.com/en-us/archive/blogs/ricom/the-performance-war-win-it-5-at-a-time

Protecting Against Regressions

Boomerang Performance Lab / Test Suite

Simple set of scenarios & metrics we capture each build

Tracks:

● CPU time via headless Profiler
● Counts & Durations via UserTiming marks & measures
● Sizes of code & plugins

https://akamai.github.io/boomerang/tutorial-perf-tests.html

https://akamai.github.io/boomerang/tutorial-perf-tests.html

You can capture your script's
own runtime stats, Long
Tasks and JavaScript errors

JavaScript Self Profiling API

Realtime Telemetry

Boss: Developer, please add this fancy new script!

<script async src="//cdn.remarketing.com/js/foo.min.js"></script>

● Perform a light-weight audit

● Do its benefits outweigh its costs?

● Ask if the library has published performance information

● Every third-party should have an owner or “internal champion”

What can you do?

What 3rd Party Scripts Should be Doing...

They should:

● Use a CDN
● Compress resources
● Set caching headers
● Set Timing-Allow-Origin
● Set ACAO
● Support HTTPS
● Support HTTP/2
● Minify
● Have ~100% uptime

Minimal:

● JavaScript size
● Work without yielding
● Network latency
● CPU
● Requests
● Cookies
● DOM changes / additions
● Event hooks
● Global variables
● Patching
● Changes without your permission

No:

● document.write()

● alert() or prompt()
● eval()

● debugger;

● Console messages
● JavaScript errors
● Including other libs
● Redirects
● Known vulnerabilities

3rdParty.io

● https://nicj.net/an-audit-of-boomerangs-performance/

● https://nicj.net/boomerang-performance-update/

● https://github.com/akamai/boomerang/issues

● https://3rdparty.io/

Links

https://nicj.net/an-audit-of-boomerangs-performance/
https://nicj.net/boomerang-performance-update/
https://github.com/akamai/boomerang/issues
http://dev.3rdparty.io/

thanks!
nicj.net/talks/

Nic Jansma
njansma@akamai.com
nic@nicj.net
@nicj

mailto:njansma@akamai.com

