
A journey to performance

Using Rust in Mercurial

Raphaël Gomès @ 
FOSDEM 2021



6-7 Feb 2021 A journey to performance

Mercurial refresher

● Version Control System started in 2005
● Written in Python (200k lines)
● Boosted by C extensions (45k lines), 
and now Rust (60k lines)

● Handles huge repos with millions of 
files and/or revisions

● Very powerful extension system



6-7 Feb 2021 A journey to performance

Why Rust?



6-7 Feb 2021 A journey to performance

Maintainability

● Better signal/noise ratio
● Better compile-time guarantees
● Standardized and modern tooling
● "Memory-safe" by default (unsafe 
blocks)

Compared to C



6-7 Feb 2021 A journey to performance

● It’s the main topic of this talk
● Compiled so no startup
● Little to no runtime
● “Zero-cost” abstractions 
● Multithreading is a lot easier

Performance



6-7 Feb 2021 A journey to performance

● Build Rust extensions called from 
Python for hot paths

● Python ↔ Rust interop using the 
rust-cpython crate

● Wrap Python with a Rust executable 
for fast paths using PyOxydizer

Attacking the Python from both sides



6-7 Feb 2021 A journey to performance

The case of « hg status »



6-7 Feb 2021 A journey to performance

The « status » command

● Purpose: show the changed files in the 
working directory

● Possible values: modified, added...

● Has to compile the .hgignore patterns into 
one big regex

● Has to check every tracked file for changes 
and show untracked files (default)



6-7 Feb 2021 A journey to performance

hg status example

$ hg st

A new-file

M modified-file

? unknown-file



6-7 Feb 2021 A journey to performance

Last year

● Re-implemented parts of the 
dirstate in Rust

● Used multithreading in traversal 
for a considerable speedup

● Created and used shared 
Rust+Python iterators



6-7 Feb 2021 A journey to performance

Previous milestones

● Up to 4x faster with Rust extension

● Available in CentOS and Gentoo

● Used on foss.heptapod.net

● Google employees showing strong 

interest



6-7 Feb 2021 A journey to performance

Previously at FOSDEM 2020



6-7 Feb 2021 A journey to performance

Not so unrealistic

hg Experiment New Rust

Mozilla clean 1.151s 73ms 44ms

Mozilla dirty 2.129s 203ms 64ms

Pathological 7.334s 973ms 53ms



6-7 Feb 2021 A journey to performance

How « status » works



6-7 Feb 2021 A journey to performance

The dirstate

● Very naive approach: open all tracked 
files and compare the content with the 
Mercurial store

● Better: store the size, exec bit, 
mtime and state (added, removed, 
etc.). This is called the dirstate

● Has not been changed since 2005, has a 
flat structure



6-7 Feb 2021 A journey to performance

Current dirstate structure



6-7 Feb 2021 A journey to performance

Old algorithm

● Walk and check the working directory 
respecting ignore rules, yielding the 
results of any file encountered

● Check if any files in the dirstate 
that were not seen on disk: they were 
deleted, ignored, under a symlink.



6-7 Feb 2021 A journey to performance

Issues with this approach

● Expensive mapping to compare it to 
the dirstate, itself expensive to 
build (tens of ms)

● Expensive ignore and security check
● Iterating more than once over the 
dirstate



6-7 Feb 2021 A journey to performance

A better datastructure

Let’s build a tree instead to mirror the 
working directory:
– Allows for a unified iteration
– More efficient ignore rules
– Symlink substitution and nested .hg 
are very cheap to ignore

– Status in a directory comes for free



6-7 Feb 2021 A journey to performance

Implementing a new dirstate



6-7 Feb 2021 A journey to performance

Components of the Tree



6-7 Feb 2021 A journey to performance

Components of the Tree



6-7 Feb 2021 A journey to performance

Components of the Tree



6-7 Feb 2021 A journey to performance

Append-only on-disk storage



6-7 Feb 2021 A journey to performance

Append-only on-disk storage

● Used in Mercurial since the 
beginning (Revlog)

● Also works with dynamic sized 
entries

● Once the unreachable parts become 
too large, re-write everything 
(vaccuum)



6-7 Feb 2021 A journey to performance

Transactionality

● There are two files per storage
● A small atomic « docket » file 
keeps track of metadata 
(generation, size, root node 
offset, etc.)

● A data file with a unique name per 
vacuum cycle



6-7 Feb 2021 A journey to performance

Memory mapping

● Memory usage stays the same with 
multiple processes

● Append-only: don’t have to worry 
about truncation

● Basically removes read time



6-7 Feb 2021 A journey to performance

Removing « build time »

● Mmap is basically free most of the 
time

● Keep the full paths, don’t compress 
the roots: no allocation needed

● Only new nodes are allocated



6-7 Feb 2021 A journey to performance

Other optimizations



6-7 Feb 2021 A journey to performance

Fast directory traversal

● Recursive implementation with 1 
task per directory (naive)

● Iterative walk is more complicated 
and will probably not be useful

● Using rayon’s threadpool: easy
● crossbeam-channel for the results



6-7 Feb 2021 A journey to performance

Mtime caching

● Compare the mtime of directories 
with the cached version

● If different: need to read the dir, 
otherwise just stat the children, 
then recurse

● Can even cache unknown/ignored 
files



6-7 Feb 2021 A journey to performance

Mtime caching

● Only works with certain 
OS/filesystem pairs

● Needs to be properly invalidated 
(parents changes, moved in FS, new 
ignore rule, etc.)



6-7 Feb 2021 A journey to performance

Let’s recap



6-7 Feb 2021 A journey to performance

Building the tree

● Open the docket and read it
● Mmap the corresponding data file
● The Vault already knows how to 
access the data, it does not need 
to be read first

● The root node is given by the 
docket



6-7 Feb 2021 A journey to performance

Checking the working copy

● Iterate over both the dirstate and 
the working copy

● Check for any relevant differences
● Directory → symlink checks are free 
when using mtime caching

● Send the results with a channel 
from all threads



6-7 Feb 2021 A journey to performance

Performance (POC)

hg Experiment New Rust

Mozilla clean 1.151s 73ms 44ms

Mozilla dirty 2.129s 203ms 64ms

Pathological 7.334s 973ms 53ms



6-7 Feb 2021 A journey to performance

Dirstate is used in many commands

● Commit
● Diff
● Update
● Purge
● Files
● etc.



6-7 Feb 2021 A journey to performance

Linux is the simpler platform



6-7 Feb 2021 A journey to performance

Paths, filesystems, IO

● Paths are just plain bytes in Linux
● Great filesystems like BTRFS
● On MacOS: unicode normalization 
issues, case sensitivity

● Windows, above issues + file IO is 
very slow and has more footguns 
with transactionality



6-7 Feb 2021 A journey to performance

Linux is faster, but could be faster still?

● Using getdents64 directly instead 
of the (most likely) slower 
opendir/readdir loop/closedir

● A lot of our time is spent in 
system instead of user

● Is fstatat/openat faster because it 
doesn’t have to re-walk the tree?



6-7 Feb 2021 A journey to performance

Mercurial 
is always getting faster



6-7 Feb 2021 A journey to performance

Other Rust endeavors

● Ancestor iteration (up to 3x perf in 
discovery)

● Copytracing (up to 20x speedup)
● Nodemap (up to 2000x speedup in 
index lookups!)

● hg cat (more than 10x speedup)
● hg files (more than 10x speedup)



6-7 Feb 2021 A journey to performance

Non-Rust endeavors

● Cloning needs 40 % less RSS memory
● Sparse-revlog (up to 99 % reduction 
of manifest size)

● New revlog format (fewer files, 
better information)

● New branch cache, etc.



6-7 Feb 2021 A journey to performance

Keep an eye out
In the next few months



6-7 Feb 2021 A journey to performance

Thank you!

FOSDEM 2021

Raphaël Gomès @ 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

