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Mercurial refresher

● Version Control System started in 2005
● Written in Python (200k lines)
● Boosted by C extensions (45k lines), 
and now Rust (60k lines)

● Handles huge repos with millions of 
files and/or revisions

● Very powerful extension system
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Why Rust?
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Maintainability

● Better signal/noise ratio
● Better compile-time guarantees
● Standardized and modern tooling
● "Memory-safe" by default (unsafe 
blocks)

Compared to C
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● It’s the main topic of this talk
● Compiled so no startup
● Little to no runtime
● “Zero-cost” abstractions 
● Multithreading is a lot easier

Performance
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● Build Rust extensions called from 
Python for hot paths

● Python ↔ Rust interop using the 
rust-cpython crate

● Wrap Python with a Rust executable 
for fast paths using PyOxydizer

Attacking the Python from both sides
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The case of « hg status »
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The « status » command

● Purpose: show the changed files in the 
working directory

● Possible values: modified, added...

● Has to compile the .hgignore patterns into 
one big regex

● Has to check every tracked file for changes 
and show untracked files (default)
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hg status example

$ hg st

A new-file

M modified-file

? unknown-file
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Last year

● Re-implemented parts of the 
dirstate in Rust

● Used multithreading in traversal 
for a considerable speedup

● Created and used shared 
Rust+Python iterators
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Previous milestones

● Up to 4x faster with Rust extension

● Available in CentOS and Gentoo

● Used on foss.heptapod.net

● Google employees showing strong 

interest
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Previously at FOSDEM 2020
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Not so unrealistic

hg Experiment New Rust

Mozilla clean 1.151s 73ms 44ms

Mozilla dirty 2.129s 203ms 64ms

Pathological 7.334s 973ms 53ms
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How « status » works
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The dirstate

● Very naive approach: open all tracked 
files and compare the content with the 
Mercurial store

● Better: store the size, exec bit, 
mtime and state (added, removed, 
etc.). This is called the dirstate

● Has not been changed since 2005, has a 
flat structure
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Current dirstate structure
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Old algorithm

● Walk and check the working directory 
respecting ignore rules, yielding the 
results of any file encountered

● Check if any files in the dirstate 
that were not seen on disk: they were 
deleted, ignored, under a symlink.
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Issues with this approach

● Expensive mapping to compare it to 
the dirstate, itself expensive to 
build (tens of ms)

● Expensive ignore and security check
● Iterating more than once over the 
dirstate
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A better datastructure

Let’s build a tree instead to mirror the 
working directory:
– Allows for a unified iteration
– More efficient ignore rules
– Symlink substitution and nested .hg 
are very cheap to ignore

– Status in a directory comes for free
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Implementing a new dirstate
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Components of the Tree
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Components of the Tree
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Components of the Tree
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Append-only on-disk storage
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Append-only on-disk storage

● Used in Mercurial since the 
beginning (Revlog)

● Also works with dynamic sized 
entries

● Once the unreachable parts become 
too large, re-write everything 
(vaccuum)
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Transactionality

● There are two files per storage
● A small atomic « docket » file 
keeps track of metadata 
(generation, size, root node 
offset, etc.)

● A data file with a unique name per 
vacuum cycle
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Memory mapping

● Memory usage stays the same with 
multiple processes

● Append-only: don’t have to worry 
about truncation

● Basically removes read time
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Removing « build time »

● Mmap is basically free most of the 
time

● Keep the full paths, don’t compress 
the roots: no allocation needed

● Only new nodes are allocated
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Other optimizations
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Fast directory traversal

● Recursive implementation with 1 
task per directory (naive)

● Iterative walk is more complicated 
and will probably not be useful

● Using rayon’s threadpool: easy
● crossbeam-channel for the results



6-7 Feb 2021 A journey to performance

Mtime caching

● Compare the mtime of directories 
with the cached version

● If different: need to read the dir, 
otherwise just stat the children, 
then recurse

● Can even cache unknown/ignored 
files
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Mtime caching

● Only works with certain 
OS/filesystem pairs

● Needs to be properly invalidated 
(parents changes, moved in FS, new 
ignore rule, etc.)
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Let’s recap
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Building the tree

● Open the docket and read it
● Mmap the corresponding data file
● The Vault already knows how to 
access the data, it does not need 
to be read first

● The root node is given by the 
docket
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Checking the working copy

● Iterate over both the dirstate and 
the working copy

● Check for any relevant differences
● Directory → symlink checks are free 
when using mtime caching

● Send the results with a channel 
from all threads
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Performance (POC)

hg Experiment New Rust

Mozilla clean 1.151s 73ms 44ms

Mozilla dirty 2.129s 203ms 64ms

Pathological 7.334s 973ms 53ms
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Dirstate is used in many commands

● Commit
● Diff
● Update
● Purge
● Files
● etc.
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Linux is the simpler platform
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Paths, filesystems, IO

● Paths are just plain bytes in Linux
● Great filesystems like BTRFS
● On MacOS: unicode normalization 
issues, case sensitivity

● Windows, above issues + file IO is 
very slow and has more footguns 
with transactionality
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Linux is faster, but could be faster still?

● Using getdents64 directly instead 
of the (most likely) slower 
opendir/readdir loop/closedir

● A lot of our time is spent in 
system instead of user

● Is fstatat/openat faster because it 
doesn’t have to re-walk the tree?
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Mercurial 
is always getting faster
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Other Rust endeavors

● Ancestor iteration (up to 3x perf in 
discovery)

● Copytracing (up to 20x speedup)
● Nodemap (up to 2000x speedup in 
index lookups!)

● hg cat (more than 10x speedup)
● hg files (more than 10x speedup)
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Non-Rust endeavors

● Cloning needs 40 % less RSS memory
● Sparse-revlog (up to 99 % reduction 
of manifest size)

● New revlog format (fewer files, 
better information)

● New branch cache, etc.
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Keep an eye out
In the next few months
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Thank you!

FOSDEM 2021

Raphaël Gomès @ 
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