
Skipping Non-essential Instructions Makes
Data-Dependence Profiling Faster

Nicolas Morew1, Mohammad Norouzi1, Ali Jannesari2, and Felix Wolf1

1 Technische Universitaet Darmstadt, Darmstadt, Germany
2 Iowa State University, Ames, Iowa

{norouzi,wolf}@cs.tu-darmstadt.de, nicolas.morew@gmail.com,

jannesari@iastate.edu

Abstract. Data-dependence profiling is a dynamic program-analysis
technique to discover potential parallelism in sequential programs. Un-
like purely static analysis, which may overestimate the number of de-
pendences because it does not know many pointers values and array
indices at compile time, profiling has the advantage of recording data
dependences that actually occur at runtime. But it has the disadvan-
tage of significantly slowing down program execution, often by a factor
of 100. In our earlier work, we lowered the overhead of data-dependence
profiling by excluding polyhedral loops, which can be handled statically
using certain compilers. However, neither does every program contain
polyhedral loops, nor are statically identifiable dependences restricted
to such loops. In this paper, we introduce an orthogonal approach, fo-
cusing on data dependences between accesses to scalar variables - across
the entire program, inside and outside loops. We first analyze the pro-
gram statically and identify memory-access instructions that create data
dependences that would appear in any execution of these instructions.
Then, we exclude these instructions from instrumentation, allowing the
profiler to skip them at runtime and avoid the associated overhead. We
evaluate our approach with 49 benchmarks from three benchmark suites.
We improved the profiling time of all programs by at least 38%, with a
median reduction of 61% across all the benchmarks.

1 Introduction

Data-dependence analysis is an essential step in the parallelization of sequential
programs. Auto-parallelizing compilers [1–3] perform the analysis purely stati-
cally. They may overestimate the amount of data dependences because critical
information such as the value of pointers and array indices are unknown at com-
pile time. This is why auto-parallelization based on purely static analysis has
not gained much success beyond the parallelization of loops that satisfy certain
constraints.

Another group of tools [4–8] avoid the limitations of purely static analy-
sis using a dynamic method. They detect parallelization opportunities based
on data dependences captured at runtime. Running the program with several

representative inputs, they counter the inherent input sensitivity of dynamic
data-dependence analysis, also exploiting that data dependences in frequently
executed code regions that are subject to parallelization do not change signifi-
cantly with respect to different inputs [5–7]. These tools provide weaker correct-
ness guarantees, although their suggestions more than often reproduce manual
parallelization strategies.

Nonetheless, the tools have a high runtime overhead which is caused by pro-
filing every memory access in the program. Many optimizations such as par-
allelizing the data-dependence profiler itself [6, 9] and skipping repeatedly ex-
ecuted memory operations [10] have been proposed to lower the overhead. In
addition, taking a fundamentally different route, we recently introduced a hy-
brid approach [11] to data-dependence analysis. The approach exploited static
analysis tools to extract data dependences in loops that follow the constraints
of the polyhedral model [12] and profiled only memory accesses outside those
loops. This reduced the profiling overhead significantly, but only for programs
containing such loops.

However, only few loops are polyhedral. The strict conditions they have to
satisfy make it hard for programmers to write a loop in the polyhedral form.
More importantly, many data dependences that can be identified statically do
not belong to such loops. In this paper, we introduce a method that is orthogonal
to our earlier work. Now, we concentrate on static data dependences between
accesses to scalar variables—across the entire source code, inside and outside
loops. We first identify the memory instructions that belong to these depen-
dences. Then, we run our dependence profiler, but without instrumenting these
instructions, allowing the profiler to skip them at runtime and avoid their asso-
ciated overhead. Eliminating instructions that can belong to all types of loops
(e.g., polyhedral, canonical, or non-canonical) or functions (e.g., recursive or
non-recursive), our approach is able to reduce the profiling overhead for a wide
range of programs. Finally, we merge data dependences extracted statically or
dynamically into one output. Here, our goal is to decrease the profiling overhead.
Finding parallelization opportunities based on the identified data dependences is
described in related work [5–8] and outside the scope of this paper. In summary,
we make the following specific contributions:

– A hybrid technique to data-dependence analysis that combines the advan-
tages of static and dynamic techniques. Contrary to our earlier work that
excluded polyhedral loops from profiling, we now skip instructions that cre-
ate statically-identifiable data dependences for scalar variables in all types
of loops and functions, reducing the profiling overhead for a wider range of
programs.

– An implementation as an extension of the data-dependence profiler of Dis-
coPoP [8], although our approach is generic enough to be implemented in
any data-dependence profiler.

– An evaluation with 49 programs from three benchmark suites, reducing the
profiling time by at least 38%, with a median improvement of 61%.

The remainder of the paper is organized as follows. We discuss related work in
Section 2. Section 3 presents our approach, followed by an evaluation in Section 4.
Finally, we review our achievements in Section 5.

2 Related Work

A great deal of research has been made in the field of data-dependence analy-
sis [1–8]. Most approaches focus on either static or dynamic analysis techniques,
with only a few attempting to combine them.

autoPar [2] is a static analysis tool which can parallelize array-based
loops [13]. Applying a set of loop transformations such as fusion, fission, in-
terchange, unrolling, and blocking, autoPar checks whether or not a data de-
pendence in a loop can be eliminated. If all dependences in the loop are elimi-
nated, it suggests parallelizing the loop. Contrary to autoPar, which finds data
dependences only in specific loops, our method identifies data dependences in
all types of loops and functions. PLUTO [1], is another auto-parallelizing com-
piler which detects data dependences in polyhedral loops [12]. TaskMiner [3] is
a static analysis tool which translates programs containing recursive functions
into their parallel versions. It exploits LLVM data-dependence analysis to iden-
tify dependences. Like TaskMiner, our approach uses LLVM and its features
to identify data dependences involving scalar variables. Contrary to TaskMiner,
which extracts data dependences only in recursive functions, we identify data
dependences in any functions and in loops. In general, static analysis techniques
may overestimate the number of dependences because they lack critical runtime
information at compile time such as the values of pointers and array indices.

Avoiding the limitations of purely static analysis, many tools [5–8] capture
data dependences during program execution. They profile memory accesses,
which imposes huge runtime overhead. SD3 [6] is a data-dependence profiler
which decreases the overhead by parallelizing the profiler itself. DiscoPoP [8] is
a parallelism discovery tool that contains a data-dependence profiler [9]. The
profiler is based on LLVM and transforms the program into its LLVM-IR rep-
resentation. It instruments all memory-access instructions with runtime library
calls that track memory accesses at runtime. It skips repeatedly executed mem-
ory operations and, like SD3, runs multiple threads to reduce the overhead.
Nonetheless, dependence profiling significantly slows down program execution,
sometimes by more than a factor of 100.

Recently, we introduced a hybrid technique [11] for data-dependence anal-
ysis. The technique is called DiscoPoP+ and uses the profiler of DiscoPoP as
the basis of its implementation. It first runs PLUTO to statically identify data
dependences in polyhedral loops. Then, it excludes the loops from instrumenta-
tion, profiling only data dependences outside the loops. At the end, it merges
static and dynamic dependences. It reduces the profiling overhead significantly,
but only for programs containing polyhedral loops. Our approach, however, ac-
celerates the profiling of all types of loops and functions. Based on the control
flow graph of the program, it statically identifies data dependences of scalar

Static
analysis

Dynamic
analysis

Scalar variables
in the entire
source code

Find & exclude
instructions

that create the
dependences

Static data
dependences

Dynamic data
dependences

Hybrid data
dependences

Detect
statically-

identifiable
dependences

Merge

DiscoPoP
data-

dependence
profiler

Fig. 1. The workflow of our hybrid data-dependence analysis. Dark boxes show our
contributions.

variables, not including passed-by-reference parameters and pointers. It then
identifies memory instructions that create the dependences and excludes them
from instrumentation. Skipping such instructions, which may appear inside and
outside loops, our method allows the reduction of the profiling overhead for a
wide range of programs.

Another hybrid-analysis framework was proposed by Sampaio et al. [14].
Their goal is providing theoretical and practical foundations to apply aggres-
sive loop transformations. They apply static alias and dependence analysis and
provide their results to an optimizer. The optimizer, instead of filtering out in-
valid transformations, performs transformations believed to reduce the execution
time. It then generates fast and precise tests to validate at runtime whether the
transformations can be taken. In contrast to their work, our contribution hap-
pens at a lower level, where we obtain dependences with the aim to accelerate
data-dependence profiling.

3 Approach

Below, we explain our hybrid method to the identification of data dependences.
Figure 1 shows the basic workflow. Dark boxes highlight our contribution in
relation to DiscoPoP+, our earlier hybrid approach, PLUTO, a static analyzer,
and DiscoPoP, a dynamic data-dependence profiler.

DiscoPoP+ relies on PLUTO to extract data dependences statically. Un-
like DiscoPoP+, which statically identifies data dependences only in polyhedral
loops, we detect the dependences for scalar variables, excluding aliases, in the

 1 void foo(int x){
 2 int y = 0;
 3 int *p = &y;
 4 *p = 4;
 5 bar(&x);
 6 }

Fig. 2. A program containing only aliased variables.

entire source code. In addition, we find memory-access instructions that create
the dependences and exclude them from instrumentation. Below, in Section 3.1,
we present the details of our method. The dynamic data-dependence analysis
will then skip these instructions during the profiling process. Finally, we merge
all dependences we have found—whether of static or dynamic origin—into a sin-
gle output file. Before we proceed to the evaluation in Section 4, we also discuss
the relation between the set of dependences extracted by our approach and the
purely dynamic technique in Section 3.2.

3.1 Data-dependence detection and instruction identification

We eliminate a memory-access instruction from profiling under certain condi-
tions. They guarantee that the instruction creates only statically-identifiable
data dependences and thus, we can safely omit it, without missing any data
dependences that a purely dynamic analysis may capture at runtime.

The first condition is that the target address of a memory instruction must
be predictable statically. We use Algorithm 1 to detect memory addresses that
comply with the condition. Figure 2 serves as an illustrating example.

The static analysis we conduct in this paper does not cross function bound-
aries. This is why we continue profiling memory instructions of variables that
create data dependences whose sink and source appear in different functions.
Nevertheless, we will investigate the analysis of dependences between functions
in the future. According to our algorithm, we first look for memory allocation
instructions in a function. We retrieve the symbolic address from an allocation
instruction and add it to the set of statically-predictable addresses. In Figure 2,
the set includes initially the address of variables x, y, and p. Then, we look for
call and store instructions. We exclude the addresses that are passed by reference
to functions; they may create data dependences that cannot be identified stati-
cally. In the figure, a reference to variable x is passed to function bar at line 5.
It means that we cannot exclude memory-access instructions of variable x from
profiling and, thus, we remove the symbolic address of x from the set of static
addresses. In addition, pointer variables create data dependences which may not
be identified statically. According to Algorithm 1, we detect a pointer variable
if a store instruction assigns the address of a variable to another variable. We
remove the symbolic address of a pointee from the set of static addresses. In the
figure, the address of variable y is assigned to variable p by the implicit store

Algorithm 1: Finding memory addresses that are statically predictable.

staticAddrs = {}
for each instruction I ∈ function F do

if I.isAlloca() then
addr = I.getMemAddr()
staticAddrs.insert(addr)

for each instruction I ∈ function F do
if I.isCall() then

params = I.getParams()
for each param p ∈ params do

if p.isPassedByReference() then
addr = p.getMemAddr()
staticAddrs.remove(addr)

else if I.isStore() then
var = I.storedV ar()
if var.isMemAddr() then

pointeeV ar = I.getPointee()
staticAddrs.remove(var)
staticAddrs.remove(pointeeV ar)

instruction at line 3. All memory instructions of variable y should be profiled
and, therefore, we discard them from further analysis.

In Figure 2, most variables are aliased via pointers or references. In practice,
we rarely find programs that contain only aliased variables. Figure 3a shows
function fib from BOTS [15]. There, we can skip profiling memory instructions
of all variables, namely, i, j, n, and an implicit variable retval, which saves the
return value because we can identify data dependences between their accesses
statically. Figures 3b to 3d demonstrate the analyses that we perform to extract
data dependences statically, using function fib as an example.

First, we convert the program into its LLVM-IR representation and generate
the control flow graph (CFG) of the program. The CFG of function fib is shown
in Figure 3b. The CFG contains many instructions that are irrelevant to the
data-dependence analysis. We generate a memory-access CFG (MCFG) which
has the same structure as the CFG but contains only memory-access instructions.
Henceforth, we briefly refer to MCFG as memory-access graph or simply as graph
if the context allows it. Figure 3c shows the memory-access graph of function
fib.

We traverse the graph to extract data dependences statically. Algorithm 2
shows how. Figure 3d illustrates the dependences that we extract from the
memory-access graph of fib. According to the algorithm, we use two recursive
functions to traverse the graph of each function in the source code. First, we pass
the return node in the graph to function findDepsFor. The function recursively

 1 int fib(int n) {
 2 int i, j;
 3 if (n < 2)
 4 return n;
 5 i = fib(n - 1);
 6 j = fib(n - 2);
 7 return i + j;
 8 }

 1 int fib(int n) {
 2 int i, j;
 3 if (n < 2)
 4 return n;
 5 i = fib(n - 1);
 6 j = fib(n - 2);
 7 return i + j;
 8 }

 1 int fib(int n) {
 2 int i, j;
 3 if (n < 2)
 4 return n;
 5 i = fib(n - 1);
 6 j = fib(n - 2);
 7 return i + j;
 8 }

 1 int fib(int n) {
 2 int i, j;
 3 if (n < 2)
 4 return n;
 5 i = fib(n - 1);
 6 j = fib(n - 2);
 7 return i + j;
 8 }

 1 int fib(int n) {
 2 int i, j;
 3 if (n < 2)
 4 return n;
 5 i = fib(n - 1);
 6 j = fib(n - 2);
 7 return i + j;
 8 }

(a) Function fib from BOTS. The memory address of all variables are statically
predictable

%retval = alloca i32
%n.addr = alloca i32
%i = alloca i32
%j = alloca i32
store i32 %n, i32* %n.addr
%0 = load i32, i32* %n.addr
%cmp = icmp slt i32 %0,2
br i1 %cmp, label %if.then,

 label %if.end

Basic block: entry

T

F

Basic block: if.then

%1 = load i32, i32* %n.addr
store i32 %1, i32* %retval
br label %return

Basic block: if.end

%2 = load i32, i32* %n.addr
%sub = sub nsw i32 %2, 1
%call = call i32 @fib(i32 %sub)
store i32 %call, i32* %i
%3 = load i32, i32* %n.addr
%sub1 = sub nsw i32 %3, 2
%call2 = call i32 @fib(i32 %sub1)
store i32 %call2, i32* %j
%4 = load i32, i32* %i
%5 = load i32, i32* %j
%add = add nsw i32 %4, %5
store i32 %add, i32* %retval
br label %return

Basic block: return

%6 = load i32, i32* %retval
ret i32 %6

Control flow

(b) Control-flow graph of fib

5
store(i)

0
store(n)

1
load(n)

2
load(n)

3
store(retval)

4
load(n)

7
store(j)

6
load(n)

9
load(j)

8
load(i)

10
store(retval)

11
load(retval)

Basic block: entry

Basic block: if.then

Basic block: return

Basic block: if.end

Control dependences

Return
node

(c) Memory-access graph of fib

5
store(i)

0
store(n)

1
load(n)

2
load(n)

3
store(retval)

4
load(n)

7
store(j)

6
load(n)

9
load(j)

8
load(i)

10
store(retval)

11
load(retval)

Data dependences

(d) Data dependences that our method extracts from fib

Fig. 3. How we obtain data dependences statically.

Algorithm 2: Traversing the graph of a function to extract data depen-
dences.
Input: I: Return node in the memory-access graph of a function
Function findDepsFor(node I):

if I.isEntry()||I.isV isited() then
return;

for each node J directly preceding I do
checkDepsBetween(I,J);
findDepsFor(J);

Function checkDepsBetween(node I, node J):
if J.isEntry() then

return;

if J.getMemAddr() == I.getMemAddr() then
if J.isStore()||I.isStore() then

addDataDeps(I, J);
return;

else
checkForRARDep();

for each node K directly preceding J do
if !K.isV isited() then

K.isV isited = true
checkDepsBetween(I,K);

iterates over all nodes preceding the return node and calls function checkDepsBe-
tween to look for dependences between the return node and its preceding nodes.
It performs the same process for all other nodes until it has found dependences
for all nodes. Function checkDepsBetween checks the memory addresses of the
two nodes that it receives and, if they are equal and one of them is a store opera-
tion, creates a data dependence edge between the nodes. Considering the control
flow, we determine the type of an identified data dependence, that is, whether
it must be classified as read-after-write (RAW), write-after-read (WAR), and
write-after-write (WAW). In Figure 3c, the value of variable i is read in node 8.
The value was previously stored in node 5. Figure 3d shows the data dependence
that our approach adds between the nodes. The type of the dependence is RAW
because the value of i is read after it is written.

We do not report read-after-read (RAR) dependences, although we iden-
tify them. This dependence type is irrelevant to the parallelization and, strictly
speaking, does not even constitute a dependence. Most data-dependence profilers
do not report them either. However, instrumenting memory-access instructions
relevant to RAR dependences adds to the profiling overhead. If we prove during
the static analysis that an instruction is only involved in RAR dependences, we
can safely omit the instruction from profiling, without violating the complete-

1
store(x)

2
load(x)

3
store(x)

Transitive
data dependences

RAW WAR

WAW

void foo(){

1 x = …
2 … = x
3 x = …

}

Fig. 4. A transitive data dependence.

ness of data dependences captured by purely dynamic analysis. In Algorithm 2,
function checkForRARDep determines whether a memory address is only read
in a function. In function fib in Figure 3a, variable n creates only RAR depen-
dences after its memory initialization. We skip profiling all of its memory-access
instructions and do not report its RAR data dependences.

We check the dependences between a node and all other nodes preceding it in
the memory-access graph of a function. We repeat the process for all functions
in a program. The worst-case complexity of our analysis O(f · n2), where f is
the number of functions and n is the maximum number of memory instructions
in a function. However, given that during execution many instructions are exe-
cuted many times, the overhead of the static pre-analysis, which usually takes
in the order of minutes, is small in comparison to the profiling overhead the af-
fected instructions would cause. Moreover, our analysis excludes memory-access
instructions that can be safely removed during the static analysis. In the worst
case, if there are no such instructions in a program, all instructions are instru-
mented and our approach falls back to the purely dynamic technique. In this
case, we cannot reduce the profiling overhead.

In the end, we merge all the data dependences that we have identified using
our portfolio of static and dynamic methods into a joint ASCII file. Furthermore,
we compact the dependence data, combining all dependences with the same sink
into a single line. The result can be used by parallelism discovery tools to find
parallelization opportunities.

3.2 Transitive data dependences

Transitive data dependences are the only difference that we came across while
comparing the sets of dependences extracted by a purely dynamic profiler and
our approach. Consider two memory-access instructions S1 and S2 in a program.
If S1 precedes S2 in execution and both either read from or write to the same
memory location M, we say that S2 is data dependent on S1. Now consider an
additional statement S3 that accesses M, too. We say that there is a transitive
data dependence between S1 and S3 if S1 depends on S2 and S2 depends on S3.
Transitive data dependences can be derived based on other data dependences
that we identify. In Figure 4, the value of variable x is read in node 2. Nodes
1 and 3 store values in variable x. Our approach identifies a RAW dependence

between nodes 1 and 2, and a WAR dependence between nodes 3 and 2. There
is a transitive data dependence between nodes 3 and 1. The type of the depen-
dence is WAW. We can identify the transitive data dependence and its type by
following the chain of the identified dependences, starting from node 3 to node 2
and further to node 1. Note that transitive data dependences only provide addi-
tional information and are not important for parallelization, as long as the chain
of dependences that create a transitive data dependence are extracted. Since
our method identifies the dependences that constitute transitive dependences,
we do not generate and report transitive dependences to keep the set of data
dependences concise.

4 Evaluation

We performed a range of experiments to evaluate the effectiveness of our ap-
proach. We used the following benchmarks: NAS Parallel Benchmarks 3.3.1 [16]
(NPB), a collection of programs derived from real-world computational fluid-
dynamics applications, Polybench 3.2 [17], a set of benchmarks including poly-
hedral loops mainly, and the Barcelona OpenMP Task Suite (BOTS) 1.1.2 [15],
a suite that all the benchmarks contain recursive functions. Since Polybench has
been designed as a test suite for polyhedral compilers, it is well suited for compar-
ison with DiscoPoP+ [11]. Also, the NBP benchmarks contain many polyhedral
loops. In addition, we used BOTS to measure the usefulness of our method for
recursive functions.

We compiled the benchmarks using clang 8.0.1, which is also used by the data-
dependence profiler of DiscoPoP. We ran the benchmarks on an Intel(R) Xeon(R)
Gold 6126 CPU @ 2.60GHz with 64Gb of main memory, running Ubuntu 14.04
(64-bit edition). We profiled the benchmarks using the inputs packaged with the
programs. Our evaluation criteria are the completeness of the data dependences
in relation to purely dynamic profiling and the profiling time. We compared the
sets of data dependences extracted by the DiscoPoP profiler with and without
our technique. Transitive data dependences were the only difference between
the two sets. We identified all the dependences that created the transitive data
dependences and thus, the set of dependences detected by our method can be
used further to parallelize the programs.

To measure the improvements in the profiling time, we executed the bench-
marks with the vanilla version of the DiscoPoP profiler. We executed each bench-
mark five times in isolation, calculated the median of the execution times, and
used it as our baseline. Then, we profiled the benchmarks using our method.
Again, we ran each benchmark fives times in isolation and recorded its median
execution time, which we then compared with the baseline. We repeated the
process to obtain the median execution times for DiscoPoP+. We used the same
input to execute the benchmarks with each approach. Table 1 shows the relative
slowdown of each approach for the three benchmark suites. Figure 5 presents
the relative reduction of the profiling overhead for each benchmark.

Whether we can reduce the profiling time of a benchmark depends on its
memory access pattern. In theory, the more memory accesses that occur without
using pointers and aliases, the more effective our method will be. If the variables
in a program are mostly pointers or passed by reference to functions, we fail
to reduce the profiling overhead significantly. Notably, our method lowered the
profiling time in all test cases.

(a) Polybench

(b) NPB (c) BOTS

Fig. 5. Profiling-time reduction relative to the standard DiscoPoP profiler.

For Polybench, our hybrid technique reduced the profiling overhead to a
lesser degree than DiscoPoP+ because these benchmarks contain polyhedral
loops. DiscoPoP+ eliminates these loops from profiling, whereas our approach
skips only a subset of the memory instructions within those loops. This is why
the median improvement of the profiling time is 70% with DiscoPoP+, but only
61% with our hybrid method.

BOTS does not contain any polyhedral loops, which is why DiscoPoP+ did
not improve the profiling time at all. In contrast, the median improvement of

Table 1. Relative slowdown caused by standard DiscoPoP vs. DiscoPoP+ vs. our
hybrid approach.

Benchmark

suites

Standard DiscoPoP DiscoPoP+ Hybrid approach

Min Max Median Min Max Median Min Max Median

BOTS 29 124 80 29 124 80 6 55 28

Polybench 70 200 121 17 70 37 24 85 43

NPB 25 116 88 22 113 53 7 71 36

Static
analysis

Dynamic
analysis

Scalar variables
in the entire
source code

Our work
in this paper:

Detect
dependences

PLUTO

DiscoPoP
data-

dependence
profiler

Polyhedral
loops

autoPar &
LLVM

alias analysis

Array-based
loops & aliased

variables

Integrate the
various

methods
to eliminate
the loops &
variables

from profiling

Fig. 6. The workflow of our future hybrid data-dependence analysis. Dark boxes show
the contributions of our future work.

the profiling time by our method across all BOTS benchmarks was 64%. In Fib,
we reduced the profiling time even by 84%.

In NPB, we found polyhedral loops in all benchmarks. Nevertheless, because
these loops did not consume a major fraction of the execution time, excluding
them did not make the profiling significantly better. DiscoPoP+ obtained only
a median reduction of 35% for these benchmarks. Our approach, on the other
hand, identified many variables in time-consuming loops. It skipped profiling the
memory-access instructions related to those variables and improved the profiling
time by a median percentage of 57% across all benchmarks in the suite.

Overall, compared to the vanilla version of DiscoPoP, we reduced the profiling
time of all programs by at least 38%, with a median reduction of 61% across all
the three benchmark suites.

5 Conclusion

Our hybrid approach to data-dependence analysis allows the profiler to skip the
memory instructions of scalar variables whose dependences can be extracted

statically. However, we still instrument memory operations of aliased variables
to capture their data dependences at runtime, avoiding the loss of any data
dependence that a purely dynamic method would extract. We implemented our
approach as an extension of an advanced data-dependence profiler and decreased
the profiling time by at least 38%, with a median reduction of 61% across 49
programs from three benchmark suites, making it far more practical than before.
Having a faster profiler, DiscoPoP tool is able to identify parallelism opportu-
nities in larger and longer-running programs. However, our method is generic
enough to be implemented in any data-dependence profiler.

Our objective for the future work is to reduce the profiling overhead fur-
ther and for a wider range of programs. Figure 6 shows the workflow of our
future hybrid data-dependence analysis. First, we will aim to exploit LLVM
alias analysis to statically detect data dependences for aliased scalar variables
and eliminate their memory accesses from profiling. Then, we will investigate
the inclusion of other promising tools such as autoPar, which statically identifies
data dependences for array variables. Finally, we will combine them with Dis-
coPoP+ and our approach from this paper, creating a superior tool for hybrid
data-dependence analysis.

6 Acknowledgement

This work was funded by the Hessian LOEWE initiative within the Software-
Factory 4.0 project.

References

1. Bondhugula, U.: Pluto - an automatic parallelizer and locality optimizer for affine
loop nests. http://pluto-compiler.sourceforge.net/ (2015) Accessed: 2019-06-13.

2. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Semantic-aware automatic paral-
lelization of modern applications using high-level abstractions. International Jour-
nal of Parallel Programming 38(5) (Oct. 2010) 361–378

3. Ramos, P., Mendonca, G., Soares, D., Araujo, G., Pereira, F.M.Q.: Automatic
annotation of tasks in structured code. In: Proc. of the International Conference
on Parallel Architectures and Compilation Techniques (PACT), Limassol, Cyprus
(May 2018) 20–33

4. Wilhelm, A., Cakaric, F., Gerndt, M., Schuele, T.: Tool-based interactive software
parallelization: A case study. In: Proc. of the International Conference on Software
Engineering (ICSE), Gothenburg, Sweden (June 2018) 115–123

5. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: Frame-
work, scope, and optimization. In: Proc. of the International Symposium on Mi-
croarchitecture (MICRO), Vancouver, B.C., Canada (Dec. 2012) 437–448

6. Kim, M., Kim, H., Luk, C.K.: SD3: A scalable approach to dynamic data-
dependence profiling. In: Proc. of the International Symposium on Microarchi-
tecture (MICRO), Atlanta, GA, USA (Dec. 2010) 535–546

7. Norouzi, M., Wolf, F., Jannesari, A.: Automatic construct selection and variable
classification in OpenMP. In: Proc. of the International Conference on Supercom-
puting (ICS), Phoenix, AZ, USA (June 2019) 330–342

8. Li, Z., Atre, R., Huda, Z.U., Jannesari, A., Wolf, F.: Unveiling parallelization
opportunities in sequential programs. Journal of Systems and Software 117(C)
(July 2016) 282–295

9. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: Proc. of the International Parallel and Distributed
Processing Symposium (IPDPS), Hyderabad, India (May 2015) 484–493

10. Li, Z., Beaumont, M., Jannesari, A., Wolf, F.: Fast data-dependence profiling by
skipping repeatedly executed memory operations. In: Proc. of the International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP),
Zhangjiajie, China (Nov. 2015) 583–596

11. Norouzi, M., Ilias, Q., Jannesari, A., Wolf, F.: Accelerating data-dependence pro-
filing with static hints. In: Proc. of the European Conference on Parallel Processing
(Euro-Par), Göttingen, Germany (Aug. 2019) 17–28

12. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral
model is more widely applicable than you think. In: Proc. of the Conference on
Compiler Construction (CC), Paphos, Cyprus (Mar. 2010) 283–303

13. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: International Workshop
on OpenMP (IWOMP), Dresden, Germany (June 2009) 28–41

14. Sampaio, D., Ketterlin, A., Pouchet, L., Rastello, F.: Hybrid data dependence
analysis for loop transformations. In: Proc. of the International Conference on
Parallel Architecture and Compilation Techniques (PACT), Los Alamitos, CA,
USA (Sep. 2016) 439–440

15. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: Proc. of the International Conference on Parallel Processing (ICPP),
Vienna, Austria (Sep. 2009) 124–131

16. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V., Weer-
atunga, S.K.: The NAS parallel benchmarks. International Journal of Supercom-
puter Applications 5(3) (Sep. 1991) 63–73

17. Pouchet, L.N.: Polyhedral suite. http://www.cs.ucla.edu/ pouchet/software/poly-
bench/ (2011) Accessed: 31.01.2020.

