Agenda

- OpenBMC Introduction
- Key features
- Make your first OpenBMC build and run it in QEMU
- Make your first customized build for your new platform (based on Intel WolfPass)
- Expose your new platform properties using EntityManager in systemd (D-Bus)
- References
OpenBMC Introduction

- Linux Foundation project.
- Goal: produce a customizable, open-source firmware stack for Baseboard Management Controllers (BMCs).
- BMC = an autonomous micro-controller operates on standby power, placed besides the main processor in the server board, that is always on and maintaining the system, independent of Host machine CPU & its software. It also has NV storage to store SDR, SEL, FRU.
- BMC Key Functionalities: Monitoring (Electrical, Thermal, etc), Recovery, Logging, Alerting, Inventory.
- FOSDEM 2020 Talk - OpenBMC and RedFish Introduction
OpenBMC Key Features

- Linux Distribution: Yocto
- Language Choice: Modern CPP (C++17 and beyond), Python, JSON
- IPC Mechanism: system (D-Bus)
- Managebility Protocols: IPMI, RedFish
Getting Started

➢ OpenBMC Developer Documentation
 https://github.com/openbmc/docs

➢ OpenBMC Presentations
 https://github.com/openbmc/openbmc/wiki/Presentations

➢ Cheatsheet
 https://github.com/openbmc/docs/blob/master/cheatsheet.md
Yocto

- Yocto – Open Source project that delivers set of tools to create Embedded Linux OS images.
- OS image – Analogy to Layered Cake 😊
- Layers – Groups related functionalities. Prefixed with ‘meta-’. Ex.) meta-poky, meta-ast2500, meta-phosphor,….
- Poky – Reference Embedded Linux OS distribution given by Yocto.
- Bitbake – Python based task scheduler. Execution engine for baking the Yocto OS 😃.
 - Recipes - contains instructions the build system uses to create packages. Ex.) Repository URL.
Your first OpenBMC WolfPass(Intel) build - QEMU

- Toaster (WebUI for Yocto) - https://docs.yoctoproject.org/toaster-manual/setup-and-use (pip3 install --user -r ./poky/bitbake/toaster-requirements.txt)

- QEMU
Build Commands

#Check my Ubuntu release version
cat /etc/os-release | grep PRETTY

#Clone OpenBMC Repo
git clone https://github.com/openbmc/openbmc.git
cd openbmc/
git tag
git checkout 2.9.0 -b my-first-build

#Setup build environment for WolfPass
setup build

#Start the toaster
source toaster start
webport=10.190.201.114:9998

#Start the image compilation.
bitbake obmc-phosphor-image

#Download the QEMU
cd tmp/deploy/images/s2600wf/
wget https://jenkins.openbmc.org/job/latest-qemu-x86/lastSuccessfulBuild/artifact/qemu/build/qemu-system-arm
chmod u+x qemu-system-arm

#Start the QEMU on compiled output image
./qemu-system-arm -m 256 -M ast2500-evb -nographic -drive file=/obmc-phosphor-image-s2600wf-*.static.mtd,format=raw,if=mtd -net nic -net user,hostfwd=:127.0.0.1:2222-:22,hostfwd=:127.0.0.1:2443-:443,hostname=qemu
Systemd

- https://dbus.freedesktop.org/doc/dbus-specification.html#introduction
- D-Bus: IPC mechanism for applications residing in the same host.
- 2 types of buses: system bus, session bus.
- 4 types of messages: METHOD_CALL, METHOD_RETURN, ERROR, and SIGNAL.
- Service: ~ daemon, ~application.
- Interface: Namespace for target object.
- Object path: Target object's path.
- busctl utility
EntityManager

https://github.com/openbmc/entity-manager

Entity manager is a runtime configuration application which parses configuration files (in JSON format) and produces a best representation of the files on dbus using the xyz.openbmc_project.Configuration namespace. It also produces a system.json file for persistance.

https://github.com/openbmc/dbus-sensors

dbus-sensors is a collection of sensor applications that provide the xyz.openbmc_project.Sensor collection of interfaces. They read sensor values from hwmon, d-bus, or direct driver access to provide readings. Some advance non-sensor features such as fan presence, pwm control, and automatic cpu detection (x86) are also supported.
Entity Manager Service

Entity Manager
(Expose SDR and FRU objects in d-bus)

xxx.json files

dbus-sensors
Actual WolfPass baseboard JSON file

- https://github.com/openbmc/entity-manager/blob/master/configurations/WFT%20Baseboard.json

... "Exposes": [
 {
 "Index": 1,
 "Name": "P3V3",
 "ScaleFactor": 0.4107,
 "Thresholds": [
 {
 "Direction": "greater than",
 "Name": "upper critical",
 "Severity": 1,
 "Value": 3.647
 },
 ,
],
 "Type": "ADC"
 },
 ,

"Name": "WFP Baseboard",
"Probe": "xyz.openbmc_project.FruDevice({'PRODUCT_PRODUCT_NAME': 'WFT'})",
"Type": "Board",
Our custom ‘FOSDEM_2021.json’ file

• FOSDEM_2021.json file

 "Exposes": [
 {
 "Index": 1,
 "Name": "P3V3_FOSDEM_2021",
 "ScaleFactor": 0.6666,
 "Thresholds": [
 {
 "Direction": "greater than",
 "Name": "upper critical",
 "Severity": 1,
 "Value": 3.888
 },

],
 "Type": "ADC"
 },
 }

"Name": "WFP Baseboard",
"Probe": "xyz.openbmc_project.FruDevice({'PRODUCT_PRODUCT_NAME': '*FOSDEM'})",
"Type": "Board"
Let us create an Yocto Distribution for our custom machine ‘wolfpass-fosdem’.

Let us assume ‘wolfpass-fosdem’ is also based ASPEED AST2500 and no changes in Device Tree. (*.dts, *.dtb) files.

Create ‘FOSDEM_2021.json’ file in EntityManager which exposes board properties present in this file in D-Bus.
Intel-BMC/OpenBMC – Custom machine WolfPass-FOSDEM

```
/tmp/community-wolfpaspass/openbmc/meta-intel$ diff -r meta-s2600wf meta-s2600wf-fosdem2021
  diff -r meta-s2600wf/conf/bblayers.conf.sample meta-s2600wf-fosdem2021/conf/bblayers.conf.sample
  19c19
  <  ##OEROOT##/meta-intel/meta-s2600wf \\
  ---
  >  ##OEROOT##/meta-intel/meta-s2600wf-fosdem2021 \\
  diff -r meta-s2600wf/conf/layer.conf meta-s2600wf-fosdem2021/conf/layer.conf
  8,11c8,11
  <  BBFILE_COLLECTIONS += "s2600wf"
  <  BBFILE_PATTERN_s2600wf = ""
  <  BBFILE_PRIORITY_s2600wf = "5"
  <  LAYERSERIES_COMPAT_s2600wf = "dunfell gatesgarth"
  ---
  >  BBFILE_COLLECTIONS += "s2600wf-fosdem2021"
  >  BBFILE_PATTERN_s2600wf-fosdem2021 = ""
  >  BBFILE_PRIORITY_s2600wf-fosdem2021 = "5"
  >  LAYERSERIES_COMPAT_s2600wf-fosdem2021 = "dunfell gatesgarth"
  diff -r meta-s2600wf/conf/local.conf.sample meta-s2600wf-fosdem2021/conf/local.conf.sample
  30c30
  <  MACHINE ?= "s2600wf"
  ---
  >  MACHINE ?= "s2600wf-fosdem2021"
  Only in meta-s2600wf/conf/machine: s2600wf.conf
  Only in meta-s2600wf-fosdem2021/conf/machine: s2600wf-fosdem2021.conf
```

References

- **FOSDEM 2020 Talk - OpenBMC and RedFish Introduction**
- OpenBMC Developer Documentation - https://github.com/openbmc/docs
- OpenBMC Presentations - https://github.com/openbmc/openbmc/wiki/Presentations
- OpenBMC Cheatsheet - https://github.com/openbmc/docs/blob/master/cheatsheet.md
- OpenBMC Community repo - https://github.com/openbmc/openbmc
- Intel OpenBMC public repo - https://github.com/Intel-BMC/openbmc
- EntityManager - https://www.youtube.com/watch?v=avDr3FQiIMw
- Dbus-sensors - https://github.com/openbmc/dbus-sensors
- Intel WolfPass Platform
Thank You !!!

Q & A