
EDK2 UEFI on RISC-V
Open Source Firmware, BMC and Bootloader Devroom

Daniel Schaefer
February 6, FOSDEM 2021

1



Agenda

– About Us
– Introduction (EDK2, RISC-V)
– History of Booting on RISC-V
– Timeline of This Implementation
– Details of Bootflow
– Demo Booting to Linux
– Status, Goals, Vision
– How to Help

2



About us

– UEFI Firmware Engineers for ProLiant Servers at HPE
– Learned a lot through this project:
Changes required in entire UEFI/EDK2 boot flow

Abner Chang

– Senior UEFI Engineer
– Lead the project

Daniel Schaefer

– Graduated last year
– First real UEFI project

3



Disclaimer

– Work was done on company time
– But we can’t speak of the strategic direction of HPE

4



UEFI and EDK2

– UEFI is only an interface specification
– EDK2 is the reference implementation of UEFI
– Initially developed for Itanium
– Now mainstream for x86_64
– Starting to get adopted on ARM

5



RISC-V

– "Free and Open RISC Instruction Set Architecture"
– Tries to be simple and legacy-free
– Three privilege modes (Machine, Supervisor, User)
– Similar to x86, boot starts without MMU in Machine mode
– FW can stay resident after boot and be called by higher layers
Like x86’s SMM but with well defined interface like Itanium’s SAL
→ Supervisor Binary Interface (SBI)

6



History of booting on RISC-V

2015 BBL
2016 EDK2 Prototype with QEMU RISC-V PC/AT board[5]

2017 U-Boot
2018 U-Boot with UEFI interface
2018 Coreboot
2019 Oreboot
2020 EDK2+OpenSBI Upstream

7



Timeline of this implementation

2015 Started at HPE
2016 Prototype presented at UEFI Forum Plugfest
2020 Initial upstreaming to EDK2

Booting to UEFI shell on Hifive Unleashed
2021 Upstream Linux EFISTUB support (WIP)
2021 Port more boards, e.g. BeagleV (WIP)

8



UEFI Phases

9



Reset at ZSBL

Walkthrough of Hifive Unleashed Bootflow

– Starts running in M-Mode without MMU
– ZSBL (zero stage bootloader)

– Embedded in mask ROM or hardcoded in QEMU source
– Jumps to predefined address

10



SEC - First Phase of UEFI (ASM)

– Fully custom for RISC-V
– Starts in assembly

1. Set up scratch register (mscratch)
2. Set up stack in temporary RAM
3. Set up trap handler to preserve registers and call OpenSBI
4. Calls SEC core C function with hartid and scratch pointer

11



SEC - First Phase of UEFI (C)

1. Add UEFI private region in scratch space
– Machine information (march, mimpid, ...)

2. Initialize OpenSBI (sbi_init)
– Stall non-booting harts

12



SEC - Initialize OpenSBI

1. Pass scratch pointer with
– Device Tree
– Next mode (M-Mode still)
– Platform specific functions

2. Register custom SBI calls (avoid linking PEI to OpenSBI)

13



SEC - Switch to PEI

1. Find PEI entrypoint in firmware volume
2. Switch to S-Mode
3. Enable identity mapped MMU
4. Jump to PEI and pass it information about

– Boot firmware volume
– Temporary ram
– Stack

14



PEI

From here on most of the code is arch-agnostic in EDK2.

1. Discover RAM and migrate there
2. Dispatch PEIMs

– Take device tree from scratch space and store in HOB
– Discover processor features and store in HOB (For SMBIOS)
– Others ...

3. Build new stack
4. Switch stack and execute DxeIpl

15



DXE - Dispatch DXEs

– Install timer interrupt handler and DXE Protocol
– Install RuntimeServices (WIP)
– Install SMBIOS tables using information from PEI

– Type 4 (CPU)
– Type 7 (Caches)
– Type 44 (Additional CPU information)

– Install device tree
– Extract from HOB
– Insert boot hartid (required by Linux)
– Insert into EFI System Configuration Table

16



BDS - UEFI Shell

Not upstream yet.
Prep: Embed EFISTUB and initrd disk image in flash image

1. Load disk into memory and turn into ramdisk with shell command
2. Install initrd on handle of fixed device path (‘initrd‘)
3. Execute EFISTUB

17



EFISTUB - Since Linux 5.10

Implemented by Atish Patra, tested and finalized in cooperation with us

1. Take device tree from EFI System Configuration Table
2. Call LoadFile2 on device path to extract initrd
3. Execute kernel proper

– Disable MMU
– jump_kernel(hartid, fdt);

18



RISC-V EDK2 Phases

19



Demo Booting to Linux

https://asciinema.org/a/KPDSvhXNVTbsQ45oRUVEu81nY
Firmware image at https://github.com/riscv/riscv-uefi-edk2-docs/releases

20

https://asciinema.org/a/KPDSvhXNVTbsQ45oRUVEu81nY
https://github.com/riscv/riscv-uefi-edk2-docs/releases


Status - EDK2

– UEFI Shell
– UEFI Applications (e.g. bootloader)
– Booting Linux via EFISTUB

21



Status - Platforms

Platform Name UEFI Shell Linux
HiFive Unleashed Yes Yes
QEMU sifive_u Yes Yes
Freedom U500 FPGA Yes N/A
QEMU virt N/A N/A
Andes AE350 N/A N/A
BeagleV N/A N/A

22



Status - Overall

– UEFI specification amended
– SMBIOS specification amended
– EDK2 port merged upstream
– Linux EFISTUB ported by Atish, merged in 5.10
– UEFI Self Certification Test ported, patches need cleanup

23



Goals

– Implement ResetSystem Runtime Service with SBI (WIP)[1]

– Upstream changes for booting Linux (FDT fixup and storing)
– SD card driver for Hifive Unleashed
– Implement new relocation types by newer GNU toolchains[2]

– Build "OVMF" for QEMU’s virt platform with VirtIO drivers[3]
→ Add boot tests to EDK2 CI
→ Boot with actual disk!

– Port to BeagleV when it arrives[4]

– SecureBoot?

24



How to Help

– Port to more boards, talk to us
– Check out the issues on the repo
– Spread the word

25



Vision for the Future

– Make RISC-V boot like rest of industry
U-boot for embedded, UEFI for consumer and server

– Follow in ARM’s footsteps to make booting boring
– Encourage discussion about desktops and servers

26



Thanks

Thanks for listening!

Check us out on GitHub:
Development Upstream
riscv/riscv-uefi-edk2-docs
riscv/riscv-edk2 tianocore/edk2
riscv/edk2-platforms tianocore/edk2-platforms

Daniel Schaefer <daniel.schaefer@hpe.com>
Abner Chang <abner.chang@hpe.com>

27

https://github.com/riscv/riscv-uefi-edk2-docs
https://github.com/riscv/riscv-edk2
https://github.com/tianocore/edk2
https://github.com/riscv/riscv-edk2-platforms
https://github.com/tianocore/edk2-platforms


References

UEFI and PI Spec https://www.uefi.org/specifications

SBI Spec https://github.com/riscv/riscv-sbi-doc

[1] SBI SystemReset https://github.com/riscv/riscv-sbi-doc/commit/2f101582210b17a6

[2] GOT relocation https://github.com/riscv/riscv-edk2/issues/3

[3] RISC-V OVMF https://github.com/riscv/riscv-edk2/issues/2

[4] BeagleV https://beagleboard.org/beaglev

[5] EDK2 RISC-V in 2016 https://www.youtube.com/watch?v=9c73WHduovs

BBL https://www.lowrisc.org/docs/build-berkeley-boot-loader/

OpenSBI https://github.com/riscv/opensbi

U-Boot https://www.denx.de/wiki/U-Boot

Coreboot https://coreboot.org/

Oreboot https://github.com/oreboot/oreboot

QEMU https://www.qemu.org/

Itanium SAL/PAL https://www.csee.umbc.edu/portal/help/architecture/24535901.pdf

28



Glossary

UEFI Unified Extensible Firmware Interface
EDK2 UEFI’s reference implementation
Tianocore Umbrella name of EDK2 and related projects
MMU Memory Management Unit
SBI RISC-V interface between S and M-mode
Itanium First 64 bit processor by Intel
SAL Itanium’s System Abstraction Layer
RISC Reduced Instruction Set Comuter (vs CISC)
SMM System Management Mode
HPE Hewlett Packard Enterprise

29


