
LLNL-PRES-818397
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Flux: Solving Exascale Workflow and Resource Challenges
Plus - How Open-Source Drives Our Project Design

Dong H. Ahn, Ned Bass, Albert Chu, Frank Di Natale, Jim Garlick, Mark
Grondona, Stephen Herbein, Joseph Koning, Chris Moussa, Daniel Milroy,

Tapasya Patki, Thomas R. W. Scogland, Becky Springmeyer

2 LLNL-PRES-818397

Demo

3 LLNL-PRES-818397

Talk Outline

§ Overview of Flux
— Examples of the APIs relevant to workflows

§ Ongoing research within Flux

§ Flux as an Open-Source Project

4 LLNL-PRES-818397

Workflows on high-end HPC systems are undergoing
significant changes.

• MuMMI– co-schedule many elements and ML
continuously schedules, de-schedules and
executes MD jobs.

• In-situ analytics modules

• ~7,500 jobs simultaneously running

Traditional pillar
high-performance computing

New pillar
Machine learning to compare

simulation and experiment

Simulation X-ray image

Complete simulation
and experiment data

Improved prediction

Deep neural
network

• Machine Learning Strategic Initiative (MLSI) – 1 billion short-
running jobs!

• Similar needs for co-scheduling heterogenous components

5 LLNL-PRES-818397

Key challenges in emerging workflow scheduling include…

Co-scheduling challenge

Job throughput challenge

Job communication/coordination challenge

Portability challenge

New pillar

6 LLNL-PRES-818397

Flux provides a new scheduling model to meet these
challenges.

Our “Fully Hierarchical Scheduling” is designed to cope with many
emerging workflow challenges.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Depth-1

Depth-2

Depth-3

7 LLNL-PRES-818397

Flux is specifically designed to embody our fully hierarchical
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job coordination challenge

Portability challenge

Scheduler Parallelism

User-Level Scheduling

Rich API set

Nested Launching

Techniques Challenges

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Scheduling Model

8 LLNL-PRES-818397

User-level scheduling solves the co-scheduling challenge.

§ Typical HPC schedulers provide batch jobs + job steps
— Complex job-step launchers != full-featured scheduler

§ Flux enables system- and user-level scheduling under a common infrastructure.
— Gives users access to a full-featured scheduler within their allocation
— Gives users the freedom to adapt their scheduler instance to their needs.

Socket 1 Socket 2

CPU-only Job
(i.e., DDFT, DataBroker,

CG Setup)

CG Run 1

CG Run 2

CG Run 3

CG Run 4

In-Situ 1

In-Situ 2 In-Situ 4

In
-S

itu
 3

9 LLNL-PRES-818397

MuMMI Scheduling Requirements

DDFT Macro-Scale SimulationDatabrokerPatch
Creator

Workflow
Manager

CG Setup CG Setup CG Setup CG Setup CG Setup CG SetupCG Setup CG Setup CG Setup CG Setup

CG Setup CG Setup CG Setup CG Setup CG Setup CG SetupCG Setup CG Setup CG Setup CG Setup

Node
Socket
CPU
GPU

CG Analysis
CG Run
CG Setup
DDFT

Patch Creator
Databroker

Workflow Manager

Hardware Jobs

11 LLNL-PRES-818397

Flux is specifically designed to embody our fully hierarchical
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job coordination challenge

Portability challenge

Scheduler Parallelism

User-Level Scheduling

Rich API set

Nested Launching

Techniques Challenges

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Scheduling Model

12 LLNL-PRES-818397

Scheduler parallelism solves the throughput challenge.

§ The centralized model is fundamentally limited.

§ Hierarchical design facilitates scheduler
parallelism.

§ Deepening the scheduler hierarchy allows for
higher levels of scheduler parallelism

§ Implementation used in our scalability
evaluation:
— Submit each job in the ensemble individually to the

root
— The jobs are distributed automatically across the

hierarchy.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux
Instance

Flux
Instance

Flux
Instance

Flux
Instance

Depth-
1

Depth-
2

Depth-
3

13 LLNL-PRES-818397

§ Single Flux Instance
— flux start my_workflow.py

Flux API Example: Running Millions of Jobs

Cluster

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

14 LLNL-PRES-818397

§ Single Flux Instance
— flux start my_workflow.py

§ Statically Partitioned Flux Instances
— for x in $(seq 1 $num_nodes); do

flux submit -N1 flux start \
my_workflow.py $x

done

Flux API Example: Running Millions of Jobs

Cluster

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

15 LLNL-PRES-818397

§ Single Flux Instance
— flux start my_workflow.py

§ Statically Partitioned Flux Instances
— for x in $(seq 1 $num_nodes); do

flux submit -N1 flux start \
my_workflow.py $x

done

§ Flux Hierarchy
— flux-tree –T ${num_nodes} \

-J $num_jobs -- flux submit my_job.py
— flux-tree \

–T ${num_nodes}x${cores_per_node} \
-J $num_jobs – flux submit my_job.py

Flux API Example: Running Millions of Jobs

Cluster

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

16 LLNL-PRES-818397

§ Single Flux Instance
— flux start my_workflow.py

§ Statically Partitioned Flux Instances
— for x in $(seq 1 $num_nodes); do

flux submit -N1 flux start \
my_workflow.py $x

done

§ Flux Hierarchy
— flux-tree –T ${num_nodes} \

-J $num_jobs -- flux submit my_job.py
— flux-tree \

–T ${num_nodes}x${cores_per_node} \
-J $num_jobs – flux submit my_job.py

Flux API Example: Running Millions of Jobs

17 LLNL-PRES-818397

Flux is specifically designed to embody our fully hierarchical
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job coordination challenge

Portability challenge

Scheduler Parallelism

User-Level Scheduling

Rich API set

Nested Launching

Techniques Challenges

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Scheduling Model

18 LLNL-PRES-818397

A rich API set enables easy job coordination and
communication.

§ Co-scheduled jobs often require
close coordination and
communication with each other and
the scheduler
— Traditional CLI-based approach is too

slow and cumbersome.
— Ad hoc approaches (e.g., many empty

files) can lead to many side-effects.

§ High-level services
— Communication overlay: pub/sub, RPC
— Job status monitoring API
— Key-value store (KVS) API

Msg Idioms (RPC/Pub-Sub)

Overlay Networks &
Routing

Comms Message Broker

Flux Instance

Sched Framework

Remote Execution

Po
lic

y
Pl

ug
in

A

Service Modules

Job Manager

Key-Value Store

Heartbeat

19 LLNL-PRES-818397

Flux API Example: Tracking Job Status

§ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue
— watch flux job list

§ Tracking via the filesystem
— date > $JOBID.start; srun myApp; date > $JOBID.stop

→ quota -vf ~/quota.conf
Disk quotas for herbein1:
Filesystem used quota limit files
/p/lscratchrza 760.3G n/a n/a 8.6M

UQP Startup
Job Submission
File Creation
File Access

Non-I/O
Runtime Stages

20 LLNL-PRES-818397

§ CLI: slow, non-programmatic, inconvenient to parse
— watch squeue
— watch flux job list

§ Tracking via the filesystem
— date > $JOBID.start; srun myApp; date > $JOBID.stop

§ Job tracking via Flux:

wait for next job to complete
fut = flux.job.wait(h)

get completed job’s info
(jobid, success, errstr) = flux.job.wait_get_status(fut)

Flux API Example: Tracking Job Status

21 LLNL-PRES-818397

Flux is specifically designed to embody our fully hierarchical
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job coordination challenge

Portability challenge

Scheduler Parallelism

User-Level Scheduling

Rich API set

Nested Launching

Techniques Challenges

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Scheduling Model

22 LLNL-PRES-818397

§ Flux can run anywhere that MPI can run, (via PMI – Process Management Interface)
— Inside a resource allocation from: itself (hierarchical Flux), Slurm, Moab, PBS, LSF, etc
— flux start OR srun flux start

§ Flux can run anywhere that supports TCP and you have the IP addresses
— FLUX_CONF_DIR=/etc/flux flux broker -Sboot.method=config
— /etc/flux/conf.d/boot.toml:

Nested launch facilitates high portability.

[bootstrap]
default_port = 8050
default_bind = "tcp://en0:%p”
default_connect = "tcp://e%h:%p”
hosts = [{ host="fluke0" }, { host = "fluke1" }, { host = "fluke2" }]

§ Already installed on many DOE systems
— spack install flux-sched for everywhere else

23 LLNL-PRES-818397

ExaWorks

§ Our survey of HPC applications shows
— a plethora of job submission libraries, interfaces, …
— overheads associated with supporting many schedulers

and systems

§ J/PSI is a Job management API for managing jobs on
HPC systems
— Lightweight, user space deployment
— Minimally prescriptive/interface simplicity
— Language independent
— Async and bulk operations where possible

§ Call to help with the J/PSI specification, prototype
Python binding, and integration with community
workflow systems
— http://exaworks.org/job-api-spec/specification.html
— https://github.com/ExaWorks/jpsi-python

http://exaworks.org/job-api-spec/specification.html
https://github.com/ExaWorks/jpsi-python

24 LLNL-PRES-818397

Flux is specifically designed to embody our fully hierarchical
scheduling model.

Co-scheduling challenge

Job throughput challenge

Job coordination challenge

Portability challenge

Scheduler Parallelism

User-Level Scheduling

Rich API set

Nested Launching

Techniques Challenges

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Scheduling Model

25 LLNL-PRES-818397

Talk Outline

§ Overview of Flux
— Examples of the APIs relevant to workflows

§ Ongoing research within Flux

§ Flux as an Open-Source Project

26 LLNL-PRES-818397

The changes in resource types are equally challenging.

§ Problems are not just confined to the
workload/workflow challenge.

§ Resource types and their relationships are
also becoming increasingly complex.

§ Much beyond compute nodes and cores...
— GPGPUs
— Burst buffers
— I/O and network bandwidth
— Network locality
— Power

PFS BW Capacity

27 LLNL-PRES-818397

Flux uses a graph-based resource data model to represent
schedulable resources and their relationships.

§ A graph consists of a set of vertices and
edges
— Vertex: a resource
— Edge: a relationship between two resources

§ Highly composable to support a graph
with arbitrary complexity

§ The scheduler remains to be a highly
generic graph code.

Containment subsystem

Network connectivity subsystem

28 LLNL-PRES-818397

Enabling elasticity in Flux-framework via nested schedulers and
directed graphs

sock1sock0

cluster

node0 node1

mem0cpu0 gpu0 mem0cpu0 gpu0

sock0

mem0cpu0
n m

gpu0

sock1

mem0cpu0
n m

gpu0

node0

sock0

mem0cpu0 gpu0

sock1

mem0cpu0
n m

gpu0

node0

sock0

mem0cpu0 gpu0
2 2

n/2m/2
gpu0

sock0

mem1cpu1 gpu1
m/2

sock0

mem0cpu0
n/2

n m nested level

0 1 2 3

§ Fluxion directed graph model
—naturally expresses hierarchies
—child instance requests resources

from parent, notifies parent of
relinquished resources

§ Graph mutation is a recursive function,
pairwise operation

29 LLNL-PRES-818397

sock1sock0

cluster

node0

mem0cpu0 gpu0 mem0cpu0 gpu0

node0

sock0

mem0cpu0 gpu0

sock1

mem0cpu0
n m

gpu0

node0

sock0

mem0cpu0 gpu0

n/2m/2
gpu0

sock0

mem1cpu1 gpu1
m/2

sock0

mem0cpu0
n/2

n m

GPU, CPU, mem?

?

?

EC2
plugin

?

Generalized Multi-Level Scheduling works for bursting: cloud is
just another level

§ traditional schedulers not designed
for resource dynamism
—often hard to add new relationships

without scheduler modification/restart

§ elastic resource addition/removal
are graph operations

30 LLNL-PRES-818397

§ Explore best ways to express converged resources

§ Enable Fluxion to schedule pod binding in
OpenShift

§ Develop tenancy model for HPC+cloud

§ Flux in the cloud, bursting to

Building industry collaborations for HPC+cloud

31 LLNL-PRES-818397

Talk Outline

§ Overview of Flux
— Examples of the APIs relevant to workflows

§ Ongoing research within Flux

§ Flux as an Open-Source Project

32 LLNL-PRES-818397

Open-Source at LLNL

§ For decades, LLNL has made software
developed for programmatic work
publicly available as open source.

§ US Federal Source Code Policy
mandates that at least 20% of code
developed by or for government
institutions be made open source

§ Today, nearly 700 open-source software
packages are developed at LLNL
— ZFS, Spack, ZFP, mfem, raja, HPSS, Slurm, …

Sources: https://software.llnl.gov
https://computing.llnl.gov/sites/default/files/public/COMP_Poster_OSS.pdf

https://software.llnl.gov/
https://computing.llnl.gov/sites/default/files/public/COMP_Poster_OSS.pdf

33 LLNL-PRES-818397

Flux’s Use of the Collective Code Construction Contract (C4.1)

§ Based on Zeromq’s C4.1: https://rfc.zeromq.org/spec/22/

§ Goal: provide a collaboration model that is scalable, open/diverse, and fast moving

§ Formal Design:
— Use git, host on a git “platform”, use the platform issue tracker and code review/merge system
— No one pushes to main fork, everything done in personal forks, all changes get reviewed via PRs
— Use share-alike license (e.g., [L]GPLv3, MPLv2). No copyright assignment process.
— Stable releases get their own repo
— All public contracts SHOULD be documented in an RFC

§ Informal Design:
— Major modular components are encouraged to be developed in their own repository

https://rfc.zeromq.org/spec/22/

34 LLNL-PRES-818397

Use git, host on a git “platform”, use the platform issue tracker
and code review/merge system

§ Pros:
— All of our work is out in the open and easily accessible (“just check my GitHub profile”)
— We benefit from GitHub’s network effects (e.g, easy to add contributors) and tooling (e.g., GH

Actions, bots, static analysis, RTD, etc)

§ Cons:
— Using GitHub, especially their integrated CI/Actions, provides a fair amount of lock-in

§ Other Lessons Learned:
— GitHub Discussions are a much better place for mailing list style discussions than GH Issues
— For any SAAS (e.g. Travis CI, LGTM, Mergify) that you use, be ready to either pay or switch if the

company behind the tool turns off the faucet to open-source projects

35 LLNL-PRES-818397

No one pushes to main fork, everything done in personal forks,
all changes get reviewed via PRs

§ Pros:
— No patch or change is special. No contributor is “blessed”. Every PR being reviewed encourages

consistent quality
— Reliance on forks means main repos stays clean and free of stale topic branches

§ Cons:
— Discovery of ongoing work can be difficult – distributed across contributors’ forks
— New contributors are sometimes unfamiliar with using multiple forks/remotes

§ Other Lessons Learned:
— Use WIP PRs to make ongoing work more visible
— Whatever Git workflow your project uses, document it well

image: Flaticon.com

36 LLNL-PRES-818397

Use share-alike license (e.g., [L]GPLv3, MPLv2). No copyright
assignment process.

§ Pros:
— Share-alike ensures that modifications to the project remain open-source
— No copyright assignment/contributor agreement makes life easier for new contributors
• C4 also mentions that it prevents hostile takeovers (no direct experience with this)

§ Cons:
— May prevent private companies from incorporating your software into their products [1]
• Note: it shouldn’t prevent them from contributing directly though

§ Other Lessons Learned:
— Mixing GPL and LGPL in the same repo is difficult. GPL dependencies can easily slip into LGPL

libraries. We went fully LGPL at the repo level to avoid this issue.

[1] https://opensource.google/docs/thirdparty/licenses/#LinkingRequirements

https://opensource.google/docs/thirdparty/licenses/

37 LLNL-PRES-818397

Stable releases get their own repo

§ Pros:
— Releases get their own separate issue

tracker and area of backport Pull Requests

§ Cons:
— Higher overhead for creating a X.1 minor

release or X.Y.1 patch release

38 LLNL-PRES-818397

All public contracts SHOULD be documented in an RFC

§ Pros:
— Enables easy modularity due to rigorous

interface/contract documentation
— Encourages well thought-out design before

implementation

39 LLNL-PRES-818397

Major modular components are encouraged to be developed in
their own repository

§ Pros:
— Modular components can move at independent rates
• Experimental components can “move fast and break

things” while stable components move more slowly

— Each component’s repo can have its own processes,
languages, dependencies, and license

§ Cons:
— Each component’s repo can have its own processes,

languages, dependencies, and license
— Higher overhead to clone, build, and install the full

Flux suite

flux-core
flux-sched

flux-rs

capacitor

flux-
accounting

flux-
security

flux-
depend

FluxRM.jl flux-docs

RFC

workflow-
examples

40 LLNL-PRES-818397

Join the Flux Community!

github.com/flux-framework

@flux-framework

§ Flux welcomes all contributors for bug
fixes, code improvements, new features,
simplifications, documentation, and more.

§ Contributing Guide:
https://github.com/flux-framework/flux-
core/discussions

§ GitHub Discussions available for questions,
ideas, and general discussion:
https://github.com/flux-framework/flux-
core/discussions

https://github.com/flux-framework/flux-core/discussions
https://github.com/flux-framework/flux-core/discussions

Disclaimer: This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

