
https://www.pengutronix.de

From Reset Vector to Kernel

Navigating the ARM Matryoshka

Ahmad Fatoum – a.fatoum@pengutronix.de

 2/30

The SoC: NXP i.MX8MM

 ARM SoCs are very diverse, we will take the i.MX8MM as an example
 Multi-core: ARM Cortex-A53, Cortex-M4
 ARMv8.0-A
 Comparatively open documentation

 → Good open source software support

[MNT Reform]
[Purism Librem 5]

 3/30

In the beginning was the Reset Vector

 An Implementation-defined address execution starts from

 Needs to point to something directly executable
 On-Chip SRAM Needs to be pre-loaded (JTAG, co-processor)→

 Memory mapped flash:
 Effort: Needs to be pre-programmed
 Cost: Often dedicated storage chip needed
 Security: If the user reprograms it, they own the system

 Mask boot ROM:
 Effort: Can be used as In-System Programmer
 Cost: Software on it can boot from many different sources
 Security: If you trust it, you can verify the bootloader

Reset Vector

BL

ROM SPL

HYP

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 4/30

Boot ROM

 Configure PLLs, Clocks, Stack, Interrupts
 Basic system initialization, e.g. latencies for on-chip SRAM
 Sample eFuses and strapping pins to determine boot

mode
 Try configured boot media in order

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

[EVK]

 5/30

Boot ROMs are complex
 My favourite so far: OMAP tftp-over-usb-ethernet-gadget

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

[OMAP]

 6/30

Boot ROMs are fallible

ARM: imx8mq: reclock ARM PLL to 800MHz

The BootROM sets up the ARM PLL to run at 1.6GHz and then uses the
divider after the PLL the achieve a CPU clock rate of 800MHz. New Linux
kernels (>= 5.8) switch to a clock path that bypasses the divider, as
the divider should not be used for CPU clock frequencies >1GHz. If the
BootROM setup is left unchanged this causes the CPU clock to jump to
the full 1.6GHz until CPUfreq takes over and reprograms the PLL. This
rate is outside of the chip specification and leads to crashes.

Fix this by reclocking the ARM PLL to 800MHz.

 Everything has bugs
 Sometimes workarounds are possible

CVE-2017-7932

An improper certificate validation issue was discovered in NXP i.MX [...]. When the
device is configured in security enabled configuration, under certain conditions it
is possible to bypass the signature verification by using a specially crafted
certificate leading to the execution of an unsigned image.

 Sometimes not:

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 7/30

i.MX: Image Vector Table (IVT)
 Located within boot device at (type-specific) fixed offset
 Contains pointers to

 Device Configuration Data (DCD)
 Next-stage Bootloader Binary
 Load Address
 Command Sequence File (for Secure Boot)
 NXP-Signed HDMI PHY firmware

 Specifies whether Boot image is a plugin

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 8/30

i.MX: Device Configuration Data (DCD)
 Bytecode interpreted by i.MX BootROMs
 Executed before copying boot program into memory
 Can do memory access to whitelisted regions

 write 8/16/32 bit literal
 poll until (*addr & mask) == mask
 set/clear bits

 Can be sufficient to set up a SDRAM controller and load code to DDR3 directly
 Not enough to configure voltages via I2C PMIC however
 Not flexible enough to properly setup DDR4

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 9/30

i.MX: Plugin Image

 Run ARM code, for when DCD can’t set up SDRAM
 returns control to BootROM
 Avoids having to do own authentication in early boot
 Still need to reimplement access to boot medium

 Newer i.MX8M SoCs support ROM API to reuse BootROM driver

 Not used in barebox

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 10/30

What now?
 We now know all we need to run our own code
 What’s missing for Linux?

 Setup and initialise the RAM
 Install secure monitor for CPU power management
 Setup the device tree
 Jump to the kernel image

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

https://www.kernel.org/doc/Documentation/arm64/booting.txt

 11/30

Setup and initialise RAM
 Configure voltage regulators

 Depending on model, initial values can be fused

 Runtime configuration usually via I2C

 Configure DDR DRAM controller
 Vendor provides tool and spreadsheet to generate register configuration

 DDR PHY microcontroller firmware blob used for training

 We will need some code running outside DRAM to initialise it:
 DCD commands: Used with i.MX6

 ARM code: Needed for proper communication with the DDR4 PHY µC

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 12/30

Secondary Program Loader (SPL)
 Also called first-stage bootloader (BootROM is 0th Stage)
 Runs from SRAM or eXecuted-In-Place (XIP) from

supported flash and sets up DRAM
 For barebox, the PreBootloader (PBL) is used for this:

 normally extracts barebox to end of SDRAM
 Allows for compressed multiplatform bootloader images

 Depending on platform, is extended to:
 Pass hardware device description to chainloaded barebox proper
 Do low-level and SDRAM init
 Load early boot firmware

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

PBL

barebox

DT FW

 13/30

PBL: SoC init

 Configure EL0/1 for non-secure operation
 Configure next lower level as AArch64
 Disable traps, MMU, caches … etc.

 Registers may be left in bad state by BootROM

 Initialize clock tree for PBL usage

imx8mm_cpu_lowlevel_init();
imx8mm_early_clock_init();

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

[MX6-CLK]

 14/30

PBL: C and first peripheral

 Set up C environment
 Enable early serial output

 imx8m_early_setup_uart_clock
 imx8mm_setup_pad: Pin muxing
 imx8m_uart_setup: e.g. default Baudrate
 pbl_set_putc: Store global function pointer for output

relocate_to_current_addr();
setup_c();
setup_uart();

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 15/30

PBL: chainloading

 Configure PMIC
 Configure SDRAM controller
 BootROM already configured some boot medium

 → reuse, don’t reconfigure from scratch

 BootROM-loaded PBL chainloads full barebox from same boot source
 Serial Provide USB gadget to continue boot→

 eMMC chainload full barebox image→

 What about secondary CPU cores though?

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

PBL

barebox

DT FW

 16/30

ARM PSCI

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0
 Control of secondary cores highly SoC-specific
 Native and Virtualized Kernel need different power

management drivers
 Solution: Generic interface

 If called from Hypervisor (EL2), trap into secure monitor (EL3)
 If called from Kernel (EL1), trap into Hypervisor (EL2)

 Secure Monitor runs in isolated secure world

 17/30

TrustZone

 Partitions system into secure and non-
secure worlds

 Linux and your normal applications run in
non-secure world

 Non-secure world can trap into secure
monitor to access secure resources

 Power Management
 Clock and Reset Handling
 Hacks the vendor couldn’t get into mainline Linux

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 18/30

Trusted Firmware - A

 Reference Implementation for secure world
firmware

 Its actual function is SoC-dependent. Common part:
execution in secure (trusted) world. On i.MX8M:

 provides secure monitor
 handles CPU power management via PSCI
 configures interrupt controller
 loads, and forwards secure monitor calls to, Trusted

Execution Environment (OS for secure world)

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 19/30

OP-TEE

 Increasing need for tamper-resistant trusted applications (TAs)
 Handling sensitive data, e.g. TLS keys, disk encryption
 Streaming DRM-protected Media
 Trusted Platform Module
 Verified boot support

 Solution
 Run „trustlets“ in secure EL0 which use standardized API to communicate

with trusted OS
 Non-secure userspace can access services via secure monitor calls

 OP-TEE is an open-source implementation of the GP TEE specification

BL

ROM

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

SPL

 20/30

PBL: TF-A Handling

 TF-A binary is linked into barebox PBL
 PBL copies full barebox to TF-A return address in SDRAM
 TF-A sets up secure monitor in EL3 and returns control to

barebox in non-secure EL2
 Now full barebox runs and because it’s EL2, not EL3:

 Enables MMU and caches
 Verifies correctness of barebox proper hash on secure boot
 Extracts barebox proper to end of SDRAM
 Jumps to barebox proper and pass it device tree

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

PBL

barebox proper

DT FW

 21/30

Device Tree
 Not all hardware is discoverable
 Hardware description in C code doesn’t scale
 Original Open Firmware spec describes how hardware can bundle

its own device description and drivers
 Linux extended the hardware description part to replace static

board description in C code on ARM
 Has its own specification now
 Bindings and device trees still mainly maintained in the Linux source tree

 also used by FreeBSD, barebox, U-Boot, TF-A, OP-TEE, Zephyr, …
 not specific to ARM: Used on RISC-V, PowerPC, MIPS, even few x86, …

 Mandatory for all new ARM Linux platforms

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

https://www.devicetree.org/specifications/

 22/30

Device Tree: Example

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0/* SoC device tree */
flexspi: spi@30bb0000 {
 compatible = "nxp,imx8mm-fspi";
 reg = <0x30bb0000 0x10000>, <0x8000000 0x10000000>;
 reg-names = "fspi_base", "fspi_mmap";
 interrupts = <GIC_SPI 107 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clk IMX8MM_CLK_QSPI_ROOT>,
 <&clk IMX8MM_CLK_QSPI_ROOT>;
 clock-names = "fspi", "fspi_en";
 #address-cells = <1>;
 #size-cells = <1>;
};

/* Board device tree */
&flexspi {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_flexspi>;

 flash@0 {
 reg = <0>;

 compatible = "jedec,spi-nor";
 spi-max-frequency = <80000000>;
 spi-tx-bus-width = <4>;
 spi-rx-bus-width = <4>;
 };
};

 23/30

barebox proper
 Basically a stripped down simplified kernel

 Most drivers ported from Linux, can probe from DT
 No interrupts, only cooperative multitasking
 Unix-like abstractions: virtual file system, block layer, character

devices, file descriptors and shell

 But with goodies for facilitating boot and development
 Redundant watchdog-supervised boot sequences
 Shared state with OS for variable exchange
 Hardware manipulation primitives
 Device Tree fixups
 Verified Boot
 All linked into single binary

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 24/30

Linux: call the kernel image
 Bootloader needs to:

 Mask interrupts
 Initialize standard ARM timer
 Load kernel at offset specified in header
 Disable MMU, Data Caches
 Initialize CPU registers for either EL2 or EL1

 e.g. x0 for device tree blob
 Jump to it

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 25/30

What else? UEFI on ARM
 Distros like their GRUB

 → Have bootloader (U-Boot, Tianocore) provide minimal UEFI environment

 → Compile your usual UEFI payload for ARM

 UEFI is almost its own operating system
 Embedded/Server Base Boot Requirements (EBBR/SBBR) define subsets

 For embedded vendors:
 Solves some already solved problems differently
 You are already responsible for the whole stack Each extra component is extra maintenance burden→

 For commercial SBCs:
 Useful for running general purpose distros
 But doesn’t yet solve the hard problems If you don’t have dedicated flash for firmware

 Can’t use a universal OS image
 Can’t do runtime variable storage
 How do you update GRUB in a fail-safe manner?

 For ARM Servers:
 taken one step further by using ACPI and extending it with device tree properties
 enables booting old long term stable distributions on newer server hardware

BL

ROM SPL

HYPER

OS

SMEL3

EL2

App

EL1

EL0

S-EL1 TEE

TAS-EL0

 26/30

Boot Flow

Bootloader

BootROM SPL

Hypervisor

OS

Secure MonitorEL3

EL2

Application

EL1
EL0

Secure EL1 Trusted Execution Environment

Trusted ApplicationSecure EL0

Time

Secure World

Non-Secure World

 27/30

Boot Flow (with ARM terms)

BL33

BL1 BL2

Hypervisor

Rich OS

BL31EL3

EL2

Application

EL1
EL0

BL32

Trusted ApplicationSecure EL0

Time

BL2

Secure World

Non-Secure World

Secure EL1

 28/30

Beyond Booting: Further Watching

 Beyond “just” Booting: barebox Bells and Whistles (Ahmad Fatoum)
 HOWTO build a product with OP-TEE (Rouven Czerwinski)
 Runtime Services: Share System Resources on Multi-Processor System (Lionel Debieve)
 Device Tree: hardware description for everybody (Thomas Petazzoni)
 EBBR: Standard Boot for Embedded Platforms (Alexander Graf, Grant Likely)

https://osseu2020.sched.com/event/eCBp/beyond-just-booting-barebox-bells-and-whistles-ahmad-fatoum-pengutronix
https://archive.fosdem.org/2020/schedule/event/optee/
https://www.youtube.com/watch?v=XwwzQAHOKlM&list=ULTK83jl0M8TY&index=114
https://www.youtube.com/watch?v=Nz6aBffv-Ek
https://embedded-recipes.org/2018/talk/ebbr-standard-boot-for-embedded-platforms/

 29/30

Image Resources

 [MNT Reform]: https://www.crowdsupply.com/mnt/reform
 [Purism Librem 5]: https://puri.sm/products/librem-5/
 [EVK]: https://static6.arrow.com/aropdfconversion/3eb66c6ff328259ad060ed3a1cb5b2e34dcaa693/imx8mmevkhug.pdf
 [OMAP]: https://www.yumpu.com/en/document/view/18631588/chapter-26-initializationpdf
 [MX6-CLK]: https://www.shuzhiduo.com/A/mo5kwRnn5w/
 [ARM-EL]: https://developer.arm.com/architectures/learn-the-architecture/exception-model/execution-and-security-states

https://www.crowdsupply.com/mnt/reform
https://puri.sm/products/librem-5/
https://static6.arrow.com/aropdfconversion/3eb66c6ff328259ad060ed3a1cb5b2e34dcaa693/imx8mmevkhug.pdf
https://www.yumpu.com/en/document/view/18631588/chapter-26-initializationpdf
https://www.shuzhiduo.com/A/mo5kwRnn5w/
https://developer.arm.com/architectures/learn-the-architecture/exception-model/execution-and-security-states

https://www.pengutronix.de

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

