
SigDigger
Blind signal analysis made easy

Introduction, examples, design details and seeking collaboration.
Gonzalo J. Carracedo

3

% whoami

 Gonzalo José Carracedo Carballal

BatchDrake at gmail.com

twitter.com/BatchDrake

github.com/BatchDrake

https://actinid.org

02.01.2021 Designed by PoweredTemplate.com

3

But what is SigDigger exactly?

 SigDigger is a free (as in freedom) and
graphical signal analyzer.

 You mean, like, another one? Gqrx, CubicSDR,
URH, SDR#, baudline, HDSDR...
 Well, yes, but simpler.
 Main use case: reverse engineering of

radio signals.
 Continuous evolution from a pet project

of mine 6 years ago.
 A bit of history is necessary

02.01.2021 Designed by PoweredTemplate.com

3

The boring summer of 2016
 Very basic knowledge about radio propagation

and data acquisition.
 I have a BladeRF and some spare time
 How about receiving satellite signals for fun?

 Inmarsat satellites in L-Band (around 1500 MHz, RHCP)
 Classic Aero ACARS messages using JAERO

(https://jontio.zapto.org/hda1/jaero.html)

02.01.2021 Designed by PoweredTemplate.com

3

DIY antennas!

02.01.2021 Designed by PoweredTemplate.com

3

JAERO

02.01.2021 Designed by PoweredTemplate.com

3

Pluggin everything: Gqrx

02.01.2021 Designed by PoweredTemplate.com

3

And now what?

 That was fun, I was able to demodulate it and
receive signals. Yoohoo I“m a hacker

 Okay, that was it?
 Many other signals in adjacent frequencies

with different frequency envelopes
 Coming from different satellites (pointing-

dependant)
 What is this?

02.01.2021 Designed by PoweredTemplate.com

3

The challenge: blind demodulation

 What if I knew nothing about the signal?
Would I be able to demodulate it?

 And even if I could demodulate it, would I be
able to decode it?

 And even if I could decode it, could I extract
data from the decoded bits?

 Welcome to the fantastic world of AMC!
 References: Balint Seeber, Daniel Estévez

(EA4GPZ)
 Rigurous moment-based automatic modulation

classification (Darek Kawamoto):
https://www.youtube.com/watch?v=lqXSxhn_A2o

02.01.2021 Designed by PoweredTemplate.com

3

The goals

 Extremely basic knowledge of DSP in general.
Need to acquire skills.
 Way to go: code your own DSP library in C and learn the hard

way. Sigutils.

 Small application: suscan (from Sigutils
Scanner):
 Curses (this was a mistake)
 Minimal human intervention
 Automatic channel detection
 Pseudocontinuous-based SNR detection
 AMC strategies (2n-th power, cyclostationary analysis)
 Integrated PSK demodulator
 Direct interaction with libbladerf, libhackrf, librtlsdr...

02.01.2021 Designed by PoweredTemplate.com

302.01.2021 Designed by PoweredTemplate.com

Suscan in action

3

Reconsidering the design

 Ncurses was a mistake.
 Pre-SOLID era library. Unmaintainable.
 Add a more practical GTK+3 interface.

 Suscan internal API was still a hack, needed to
redesign it.
 GR-like pluggable blocks
 Message passing for thread

communication
 Client-server model

 Add support for raw I/Q captures

02.01.2021 Designed by PoweredTemplate.com

3

The new Suscan

02.01.2021 Designed by PoweredTemplate.com

3

The new Suscan

02.01.2021 Designed by PoweredTemplate.com

3

This CPU is on fire!

02.01.2021 Designed by PoweredTemplate.com

 The block-based flowgraph was poorly
implemented and it was also a mess
 Concurrency overhead
 Replaced by the worker approach (more on this later)

 FIR-based channelizer!
 Real-time filtering at device rate! Ouch!
 Use FFT channelizer.

 GTK+3 is another mistake
 Used to like it because of its native C interface.
 Otherwise slooow. Cairo is one of the slowest graphical APIs I

ever dealt with.
 Extremely difficult to bypass it and barely maintainable.
 Too much boilerplate, even with GtkBuilder.

 Most of the Suscan“s core functionality can be
detached from the GUI at this point.

https://commons.wikimedia.org/wiki/
File:Texture_Fire.jpg

3

The great refactor

02.01.2021 Designed by PoweredTemplate.com

 Ad-hoc SDR compatibility code replaced by
SoapySDR.
 Automatic compatibility with most SDRs in the

market.
 Removed GTK+3 support and all references to

GUI.
 Now suscan is actually a real-time signal analyzer

library (libsuscan), providing a big server class
called suscan_analyzer_t

 Client-independent API (6 dec 2018)
 Start to work on the Qt5 frontend: 5 jul 2019

 C++. Yikes. But damn, Qt5 is so fast
 Based on Gqrx“ spectrum widget directly.

 First beta release of SigDigger in 16 aug 2019

3

SigDigger in rtl-sdr.com!

02.01.2021 Designed by PoweredTemplate.com

3

What is SigDigger now?

 SigDigger is a free (as in freedom) and
graphical signal analyzer.

 It is an analyzer because it is supposed to let
you analyze individual frequency-multiplexed
signals.
 Capture small bursts and inspect the wave
 Demodulate signals in real time (PSK / ASK / FSK)
 Watch generic analog TV (presets for PAL and

NTSC)
 Previous AMC features (cyclostationary...)
 Listen to AM / FM / SSB signals
 Bookmarks & bandplans
 Panoramic spectrum

02.01.2021 Designed by PoweredTemplate.com

3

Some performance figures
 Test computer:

 Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
 2 cores, 4 threads

 CPU usage w.r.t. Gqrx, same signal source
 Around 20% less, equivalent configurations
 CubicSDR is still less CPU intensive

 Processing speeds:
 Spectrum only, 16K FFT bins, 60 fps: 108

Msps
 Spectrum only, 64K FFT bins, 60 fps: 97±5

Msps (fluctuating)
 FM demodulator, 333 kHz BW: 17 Msps
 Analog TV demod: 5.6 Msps

02.01.2021 Designed by PoweredTemplate.com

2

Demo time

02.01.2021 Designed by PoweredTemplate.com

2

Behind the magic

02.01.2021 Designed by PoweredTemplate.com

3

The architecture

02.01.2021 Designed by PoweredTemplate.com

Sigutils
Generic DSP library

(IIR filters, FFT channelizer, PLLs...)

Suscan
Real-time signal analysis library

(suscan_analyzer_t)
SuWidgets

QtCreator-compatible Qt5 widget library
with most widgets used by SigDigger

(Waterfall, Waveform, Constellation, LCD...)

SigDigger
Qt5 graphical front-end for Suscan

3

How come it is so fast?
 Three keys:

 FFT channelization via FFTW3
 Worker thread approach distributed in

different cores
 No blocks, just a barrier after all inspector

workers have finished with their batches
 Other important aspects:

 Qt5 is incredibly fast at drawing things!
 Important fraction of the analyzer API async

and message-based.

02.01.2021 Designed by PoweredTemplate.com

3

Workers are just callback queues

02.01.2021 Designed by PoweredTemplate.com

Task 4 Task3 Task 2 Task 1

push()

Worker thread

3

Workers are just callback queues

02.01.2021 Designed by PoweredTemplate.com

3

Suscan“s Analyzer architecture

02.01.2021 Designed by PoweredTemplate.com

Analyzer API
Control signal source,

throttling, inspectors, etcMessaging API
(async operations)

Direct API
(signal source operations)

Client

Source worker

Inspector
worker 0

Inspector
worker n - 1

Slow worker

I/O queues

Method call/return

3

Workers in detail

02.01.2021 Designed by PoweredTemplate.com

Source worker

Inspector
worker 0

Slow worker
Slow requests
(e.g. set device

frequency)

Inspsched task
 Sampler loop
 Estimator loop
 Spectrum loop

Source messages
PSD updates, status
messages, errors...

Inspector traffic
Requests, PSD,
estimator data,

demodulated samples...

Signal
source

 Real-time requests
to source

I/Q Samples

3

The channel inspector
 Representation of a channel being analyzed in real-time

 Actually, it is a real-time configurable demodulator

 Several specializations

 The PSK inspector

 The FSK inspector

 The ASK inspector

 The RAW inspector

 The audio inspector

 Processes batches of samples produced by the source
worker“s FFT channelizer by its loops

02.01.2021 Designed by PoweredTemplate.com

3

Sampler loops

02.01.2021 Designed by PoweredTemplate.com

AGC

Costas loop

MF

Clock recovery

Equalizer

AGC

Costas loop

MF

Clock recovery

Equalizer

AGC

PLL

MF

Clock recovery

Equalizer

Quadrature demod

PSK FSK ASK

3

Panoramic spectrum

02.01.2021 Designed by PoweredTemplate.com

2

The future

02.01.2021 Designed by PoweredTemplate.com

3

List of open fronts
 RPC-like remote analyzers (CBOR based)
 Remove barriers. Use buffer pools instead.
 Embed SoapySDR modules in the macOS bundle.
 Deeper refactor of the analyzer
 Alternative interfaces (web interface, mobile?)
 TLE-based Doppler correction for satellites / spacecrafts
 Digital decoders (Blind viterbi decoder, symbol tagger,

differential decoder, etc). Hobbits integration?
 https://github.com/Mahlet-Inc/hobbits

 Pluggable inspectors (APT requires this, also for FM. SDR#-
like slicing?)

 Device-specific settings and hacks (Bias Tee)
 PlutoSDR off-loading (spectrum, channelization…)

02.01.2021 Designed by PoweredTemplate.com

https://github.com/Mahlet-Inc/hobbits

2

Want to help? :)

02.01.2021 Designed by PoweredTemplate.com

2

Thanks!
Especially to Jeff Sipek, Aaron Foster, Mehdi Asgari, Shiki Owo, Andrés Perez

and all the people that helped me out with SigDigger one way or another

02.01.2021 Designed by PoweredTemplate.com

3

Remember you have to attribute!*

 Creating content takes a lot of time and effort, but all we
need from you is only an attribution link.

 In order to use the content or a part of it, you must attribute
it to PoweredTemplate.com, so we will be able to continue
creating new graphic resources every day.

 Insert the attribution line in the credits section of your
presentation. If it’s not possible, place it wherever it's visible
on a web page, close to where you’re using the resource.

 For example: This presentation has been designed using
resources from PoweredTemplate.com

* This only applies if you downloaded this content as an unsubscribed (free)
user.

02.01.2021 Designed by PoweredTemplate.com

https://poweredtemplate.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

