
1

The Perfect Gerrit Patch
A consumer report

FOSDEM 2021
Stephan Bergmann
Red Hat, Inc.

2

LibreOffice and Gerrit

● LibreOffice uses Gerrit for code review (https://gerrit.libreoffice.org)
● …and Jenkins for testing (https://ci.libreoffice.org)

● Can’t bypass Gerrit
● …but can skip Jenkins, in an emergency

https://gerrit.libreoffice.org/
https://ci.libreoffice.org/

3

Gerrit jargon

● You upload a change for review
● Successive versions of a change are known as patch sets
● Multiple changes can form a relation chain
● When you submit a change it becomes a “real” git commit

4

Consumers of changes

● Initially, during review of an evolving change
● After submitting:

● Post-facto review
● When the commit is later found to cause an issue

● Commenting on a change does not end once it gets submitted

5

Writing a change: Reformatting, a recurring issue

● And old, evolving code base following all kinds of different formatting styles
● Mostly readable just fine, though

● When changing existing code, avoid random reformatting of unrelated code
● One line actually changed, but five additional lines reformatted
- if(foo< Bar >(baz))
+ if (foo<Bar>(baz))

● Distracts the reviewer
● Complicates use of tools like git blame or git log -S

6

Writing a change: Reformatting, a recurring issue

● New files enforce clang-format to avoid later random reformatting
● Does not imply existing code should be clang-format’ed

● clang-format does not make the code more beautiful, or more readable, or…
● Merely an extra measure to avoid random reformatting, used where applicable

● When moving existing code to another file, retain the formatting
● Adapt solenv/clang-format/excludelist
● Helps tools like git log --follow

7

Sorting

● When adding to a list, keep the list lexicographically sorted
● #include blocks, gb_Library_add_exception_objects, …
● Avoids accidental duplicates
● Avoids merge conflicts

8

Links to elsewhere

● When you reference another git commit (in the commit message, in a code
comment, in a Gerrit comment), give context:
● 2fa55357223595a98c0dbc8bdb917b77a170da80 "Use OUStringChar"
● Helps identify the change if we ever switch VCS
● Helps humans

● Same for other links, like bugzilla issues

9

Before you upload a change

● Test your change locally on at least one platform
● make check

● Avoid --without-java
● Verify it covers the changed code

● --enable-werror
● Install clang-format for the git commit hook

● The loplugin warnings from Jenkins’ gerrit_linux_clang_dbgutil likely suck
● Sorry about that
● You can locally use Clang and --enable-compiler-plugins, too

10

During review

● Use Gerrit comments to explain why you uploaded a new change set
● …in case that is not obvious
● Do not use the change’s commit message for that

● Keep rebases separate from actual changes
● Though Gerrit tries to present a decent diff even then

11

Poor Jenkins

● Jenkins is a scarce resource
● Avoid excessive numbers of patch sets

● Build locally first
● Avoid false relation chains among Gerrit changes

● Expensive Jenkins rebuilds
● Accidentally submitting out-of-order if it is a true relation chain after all

12

Before you submit a change

● Wait for Jenkins’ Verified+1
● Resume upon spurious build failures
● Rebase upon systematic issues with the parent

● Be careful about Jenkins’ Verified+1
● If the Jenkins build is already a week old

● Rebase once again
● If the change’s parent commit is already a week old

● git pull before you start to write a Gerrit change

13

Full Disclosure

● This was a rant
● But I love you all
● And I’ve made all the mistakes myself, too

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

